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ABSTRACT. This paper investigates convergence behavior of composition sequences

fl o f2 o o A(z) and f o f-I o o f (z) where the A’s are bilinear transformations and f z

Additional results are provided for the case when the f,’s are more general functions
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1. INTRODUCTION
Starting with a sequence {f, } of complex valued functions, including bilinear transformations

A(z) :-- (a,z + b,.,)/(c,z + d,.,), a,d b,., # O,

two composition sequences can be formed

F,.,(z) := fto f2 o o f,.,(z), (inner composition), and

(1 1)

(1 2)

G,(z) := A o A-a o o f(z), (outer composition). (1 3)

The sequence {Fn (z)} (using (1.1)) arises in connection with normal continued fractions [1 ], and

{Gn(z)} occurs (using (1 1)) in the study of reverse cominued fractions [2] and (more generally)in the

computation of fixed points of functions written as infinite expansions [3]. Both sequences give

perturbed orbits of f(z) iff . f, and are thus interesting from a dynamical systems perspective

The investigation of the convergence behavior of sequences of the form (1.2) involving bilinear

transformations (1.1) goes back at least to Paydon & Wall [4] (1942) awl Schwerdffeger [5] (1946), and

was continued by Piranian & Thron [6] (1957), and DePree & Thron [7] (1962). Later, Magnus &
Mandell [8] (1970) gave explicit results when f,--, f, where f is categorized as "hyperbolic",

"loxodromic", or "elliptic" (see below). The author pursued the elliptic case further and explored the

remaining "parabolic" case [9] (1973) More recently the author investigated these cases with regard to

outer compositional structures {Gn(z)} in [10] (1991), [2] (1993). Barrlund, Karlsson & Wallin [11]
(1993) have studied random inner and outer compositions of bilinear transforrnationsmwithout the

requirement that f, --, f.
In addition, the author has explored structures (1.2) and (1.3) for sequences {f} of more general

complex functions in [12] (1988), [13] (1990), [14] (1992) Lorentzen has written a number of papers

concerned with convergence properties of sequences of bilinear transformations and a definitive paper on

inner compositions of more general functions 15] (1990)
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This paper focuses on a case not falling imo the four categories (hyperbolic, loxodromic, parabolic,
or elliptic) mentioned above: the convergence behavior of (1.2) and (1.3) when f, z, the idemity
function, and (f,) is described by (I. I) A minor additional case is considered also f a, a certain

constant. Further theory is developed for the setting in which the f,,’s are not necessarily bilinear
transformations but f,., z.

The earliest results for f’‘ z are due probably to DePree & Thron [7]
THEOREM I.I. If F,,(z)) converges to a bilinear transformation, where the f’‘’s are bilinear

transformations, then f’‘ z.

and its partial converse.

THEOREM 1.2. if, for f,(z) :- (a,.,z + b’‘)/(cz + d,), a,.,d b,c 1, Ha,,, lid,.,, b,.,, and

c all converge absolutely, then lim,.F’‘(z) (Pz + Q)/(Rz + S), where PS RQ O.
The hypotheses of Theorem 1.2 are written in terms of the coefficients of f, as it is described in

(1.1). This seems reasonable, particularly in light of applications. However, there is a more "natural"

approach to the study of compositions ofthe form (1.2) and (1.:3), one that demonstrates the similarity of

convergence behavior between {F,,(z)}, {G,,(z)}, and simple iteration {f"(z)} when f,, f It is this

approach that is taken in the current paper.
We first observe that any bilinear transformation f (or f,0 having two finite and distinct fixed points

c and/ (or a, or/n) can be written in "multiplier" form (Ford [16]):

f(z) c z t Z

f()
g irl < , and

z ’ A(z) / K,z_’‘ IKl < 1. (1.4)

Here K is called the "multiplier" ofthe transformation. Its value determines the character of f Equation

(1.4) coupled with the strongly geometrical nature of bilinear transformations leads to clear geometrical
convergence patterns for the iteration {f"(z)} (see Ford [16], e.g.). Using (1.4) judiciously also allows
the formulation of hypotheses written in terms of ,,,/,, and K,, that lead to conclusions on the

convergence behavior of {F’‘ (z)} and {G’‘ (z) }.
When f is hyperbohc or loxodromic (IKI < 1), (1.4) shows that f"(z) , the attractmg fixed

point of f, for each z , the repelling fixed point of f. Under rather mild restrictions on a,,, B,, and

K,, the behavior of {F,,(z)} and {G,(z)} when f--, f with IKI < is analogous to that of

{f"(z)}, [8], [10]. In the parabolic case (single attracting fixed point c), and the elliptic case (IK[ 1,
K 1), roughly parallel behavior has been shown to exist between {f"(z)} and {F,,(z)} and {G(z)}
as well [2], [9].

However, in the present case (f(z):= z) one finds {f"(z)} exhibiting no dynamical behavior

whatsoever, since f(z) z Clearly f has an infinite number of neutral fixed points, no one of which

exerts more dynamical influence than the others. Nevertheless, it will be shown that when f, z

"slowly", with each [K, < 1 in (1.4), G,.,(z) a lima for all z with one possible exception and

F(z) --, F, a constant, for all values of z except z =/. Thus the "perturbed iterations" {F(z)} and

{G,, (z)} possess virtual attracting fixed points even though z f(z) lim f,, does not.

To demonstrate the importance of the sequence {K,,} in determining "slow" versus "fast"

convergence, we have the following simple example.
EXAMPLE. f.z)-a

.()_ K., with a # and (a) K. 1- l/n, and (b) K. 1- 1In
,>I Then (a) c._._fi (l_)z-oc.()-a 0 shows that G,(z) -- G(z) =_ o for all z , and

3=2

(b) c(z)-a H (1 )z_._l z-,z_a shows that G(z) limG(z) a bilinear transformation. The
n=2

same results clearly hold for F(z) liraF(z)
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2. OUTER COMPOSITION
The basic theorem ofthis section is the following:
TItEOREM 2.1. Suppose
(i) 0 < [K,[ < 1, Kn 1 (f. z) or K. 0 (f, a),
(ii) an a,/ B, with a #/, and

(iii) E[c,,- an-l[ < oo, and E[/-/-1[ < oo

Then

IfYIK 0, {G(z)}converges to for all z 6 C, with one possible exception

2 IfH K, F # 0, {G,(z)) converges to a bilinear transformation

PROOF OF 1. The proof of Theorem 2.1 involves the same techniques used by Magnus &
Mandel [8] and the author [9] in the elliptic and parabolic cases for inner compositions.

We begin by solving (1 4) for f,, (z), generating the following relationships.

c. (1 K,,)I(K,,an -/.), d. 1, provided K.a. J # 0.
(2 l)

The inequality in (1.1) is equivalent to K,(c B)2 # 0. If K 1, an a, B, , with

3, then f z. IfK -- 0, then fn a

Nxt, set

A,(z) := (z- an)/(z- ,,.,), and K,(z) := Kr,z, giving
Al(z) := (Tnz- ci.)/(z- 1).

(2.2)

Thus

fn(Z ,-1 o Kn o ,n(Z).

Hel’lCe

{;.(,) y. o A-1 o o A (*)
1 0 ,/jn_l 0 0 IJh+10Wh 0 0 Wl(S(2:)),1 0 Wt 0 Wh Sl Z

(2 3)

where

W./(Z) := K.+I o ./+1 o

W3(z :-- ,lz o w3_ o o I/31 (z),
hW_l (z) := ,-1 o

_
o o h+(), d

s() := K o ().

We find that

where

,o() (p + )/% + 1), (2.4)

po go(3_: a,)/(3 ,-1),
: go(,o 0-:)/(3 ,-:), and

The hotheses of Theorem 2.1 imply H po 0, EIql < , d EIrl < . It is of vue to

introduce the follong addition notation

W+o(z Wh+ o Wh+3_ o o Wh+l(Z) (A+sz + B+s)l(C+sz + D+),
th A+: =ph+,, B+: qh+:, C+x rh+, d D+: 1.
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Then

(2 5) and (2.6) give

=p.A_l+q. r++Z rA_
j=h+2

(2 9)

It easily follows that Ah has 2n-h-1 terms, and, by writing out the first few terms and applying (2.9)
inductively, one gets

LEMMA 2.1. Ah I-I p: + rkl qk -t- rkt qrk3q, + + rkl qk rk,_ q,, where the *
:=h+l

indicates a suppression ofIIp products and h + 1 < kl < k < k2 < n

Given e > 0, for h sufficiently large one has IPh+al < 1 and

j=h+l

h+l h+l h+l h+l

Thus, for sufficiently large h and n > h, Ah is bounded by 1.

Next, from (2.6), one can get Ch
rh+l + , rAh_l, SO that Ch , 0 for large h and n > h.

j=h+2

Also, from (2.6), ICh h hC_l <_ I=1 soIAn_l, that ICh chl< IrallA3h_l for n>m The
/=m+l

Cauchy condition is met, and we see that

lira Ch L(C,h) O. (2.10)

The following formula can be obtained by induction on (2.5)

Anh p + q,n+lChm + qnCnh_l (2 11)
j=h+l m=h+l j=m+2

pJ

Which implies, using Hp 0,

lim A 0. (2.12)

In analogy with (2.9), (2.7) and (2.8) combine to give

j=h+2

(2.13)

For e > 0 one can use a lemma analogous to Lemma 2.1 to show that, if h is sufficiently large,

Bh ( fi PJ) qh+l < e fr n > h" s that {Bh} is bunded by a small psitive nunaber

Dh in (12) as we did Ch in (2.6) gives Dh 1 for large h The Cauchy Condition then gives

lim D L(D, h) 1. (2 14)
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From (2.7) and (2.8) one obtains

Bn P q+l + Z P. qm+lD + qnDn_l
=h+2 m=h+l

Using rI p 0, it follows that

lira B 0. (2 15)

Returning to (2.3), we choose and fix a value of h large enough to satisfy the various requirements
already described. Then, from (2 10), (2.12), (2.14), and (2.15),

a OV+OA,_V +B_W_(V) -A-- L(C,h)V + n(D,h)’
s n oo (L(D,h) I)

C_lV +D_

Stting V := V(z):= W/(S(z)), on gts

lira G.(z) lira A(w_(v))=,

provided

V(z) # oo if L(C,A) 0 and V(z) # -L(D,h)/L(C,h) if L(C,h) # O.

PkOOF OF . Using the same set of formulae derived in the proof of part I, one can show the

following: For large vlues of h, A I, and

Therefore

lim C L(C, h) ,. 0 (2 10’)
lim Ah L(A, h) , 1 (2 12’)
lim Dh L(D,h),, 1 (2.14’)

lim B L(B,h) , O. (2 15’)

h h
h An-IVh + Snn-1 (l +F.1)Yh(Z -’-2 Az + BW-I(Vh)’- Chn_lYh +Dnh_l e.3Vh(Z)+(1 +e4) Cz+D (z).

Hence lim G,., z lira ,.1 (Wrn_h (Vh 3(
z)_ a bilinear transformation.

Next, we look at a more general class offunctions f, z.

TIOREM 2.2. Given a sequence offunctions {fn) where fn z. Suppose
(i) there exists a convex set S where S D f. (S),
(ii) there exist {an) where fn(an) a. 6 S, an -’-} a S, and EIcn
(iii) If’.(z)l _< Kn _< 1 for all z e S, and Kn I with H Kn 0.

ThenG(z) c for all z in S.
PROOF. First, we see that [fn(z)- f.(w)[ _< f[f(s)[ds <_ K.lz-

[f,(z) fn(cn)[ _< Kr,[Z c.[ for all z in S. Then backward recursion

[Gn(z) 1 [c n[ _< Ia(z) =l -< Kn[Gn-l(Z) Cn-l[ + Kn[an Ctn-[ gives

implies

using

From this it is easily shown that G,(z) a. 13
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COROLLARY 2.1. Let A(z) := K,,g,(z)(z c,) + c,, for [z[ < 1. If (i) 0 < K, 1- th

nK=0, a0, d (ii) [&(z)[l, [g(z)l 1, g(z)l, for [z[ 1, then G(z)O for

The prooffollows iedimely from Theorem 2.2.

ELES. g(z) := 1 1/n + z/n produces quadrmic ncfions f(z) a.z + bz + ,
d g, (z) := (2 v)/(2 + vz produces non-biline rationM nctions f (z) + e In

both instates K := 1 l/n, a := 1/n e suient to satis conditions in the hothesis of the

theorem.

3. RCOMPOSmON
We mm now to the nctionM sequence {F()} descbed in (1.2) d usel in smdng tradition

continued fractions. TMs fo of composition has the longest hio. One of the eliest results for the

case f(,) :=, is the follong (DePree & Ton [7])
mEom .l. Let F(,):= o f2 o o/() (p +)/(, + ), = /(,)

(a2 + b)/(z + d), th a b 1. Suppose that

(i) ]b] d ]c[ both converge

(ii) ] 1 +, 0, diverges
en lim F(2) F, a constt, for Ml # 0

dcMtes we have

COROLRY 3.1. Suppose that the follong conditions hold:

(i) [ad-both converge
(ii) K

Then lira F(z) r, a constt, for Nl 0.

PNOOF. From (2.1) dd b 1, one gets

( )/, ( )/, ( /, (.

d (K )/&, where & := ( ). Cnditions (i), (ii), (iii) ofe cor then

imply the htheses ofTheorem 3.1

A different set f htheses n the fixed ints lds to a sil enclusin: e tques of

proof ofTheorem 2.1 c be used to prove Neofat theoem for ier composition The steps

e nely identicly, so oNy eended utline ofthe proof is Nven.

(ii) , , th ,
(iii) I-

_
< ,d1-- < ,d

(iv) gg 0.

Then {F()} cenverges t r, a constt, fr N1 C expt

PNOOF. Wete

w2(s()),

where
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And find that

(3 3)

Now write

h hW+ Wh+ o Wh+ o o Wh+3(Z) (A+jz + B,+j)/(Ch/Z + D+),
with A+ Ph+l, B+I qh+l, Chh+l rh+l, arid D2+ 1.

As before

h r h (3 4)Ah A,_ + nBn_
Chn--PhnChn_l-t-?’nDnh_l (3 5)

Bh q,Ah,,_t + Bh_l (3 6)
Dh q,Ch-, + Dhn-1 (3 7)

By hypotheses, E I%1 and E Irl both converge, and P3 K(1 + s3), where

s [(%.1 %) + (+ -/j)]/(/ %+,). Thus E Isjl converges, and this implies H p (HK)

before, we find that A is uifoy bounded th regd to n if h is lge enou, d is in fact
close to 0 Therefore (3.6) gives 1 B L(B, h) O. TNs, coupled th the rersive foula

j=h+l re=h+2 =m+l

NvesiA 0. Sillily, C is bounded foy (d close to 0) for sufficiently lge h d N!

n > h. Thus tim D L(D, h) 1.

Therefore

=h+2 re=h+2 =m+l

shows tMt lira C 0.

Now F(z) a o Wh o W(S,(z)), where lim S(z) (z- a)/(z- ) d lira

hW_(S(z)) lira N_s.(,)+o_x L(B,h)/L(D,h) 0 for z #. Hce lira F(z)

A? oWh(L(B,h)/L(D,h)),for z .
Theorem 1.2, like Theorem 3 1, is elier result for thee f(z) z. In tes of fixed poims

we have

COROLRY 3.2. If 0 < IKI < 1, K 1, , , , d g converges
absolutely, then lim F(z) (Pz + Q)/(Rz + S), where PS RQ O.

PROOF. From (3.1) it is not dcult to ved that the hotheses of the coroll imply those of

Theorem 1.2 For the products involfing a d use K 1 + (K- 1) d obsee that the

convergence ofE I1 K implies that ofE l1 I.
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Finally we present a simple result for sequences of more general analytic functions Actually,
Theorem 3.3 is a corollary to Theorem 2.2 [12], but its proof is so brief it is given here

TREOREM 3.3. Suppose {f, (z)) is a sequence of functions analytic on a convex and compact set

S and such that fn z or fn -’ a on S, with (i) S :::) fn(S) for each n, (ii) Ifn (Z)] _< Kn < 1, and
(iii) H K,, 0. Then lim F,, (z) F E S, uniformly for all z in S

PROOF. As in the proof of Theorem 2.2, condition (ii)implies [f,(zl)- f,.,(z,2)l <_ K,lzl- z21
Applying the Cauchy Condition,

IF,+,(z)- F,.,(z)l <_ glf2 o f3 o o f,.,+p(z) f2 o f3 o o f,(z)l
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