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ABSTRACT. This paper investigates convergence behavior of composition sequences
fiofoo..o0fa(2) and f, 0 fo_y 0...0 fi(2) where the f,'s are bilinear transformations and f, — z
Additional results are provided for the case when the f,'s are more general functions
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1. INTRODUCTION
Starting with a sequence { f,,} of complex valued functions, including bilinear transformations

fn(2) = (anz +b5)/(cnz +dn), @ndy —bnc, #0, amn

two composition sequences can be formed

F.(z):=fiofso..0f(2), (inner composition), and (12)
Gn(2) = fno fn19...0 fi(2), (outer composition). a13)

The sequence {F, (z)} (using (1.1)) arises in connection with normal continued fractions [1], and
{G.(2)} occurs (using (1 1)) in the study of reverse continued fractions [2] and (more generally) in the
computation of fixed points of functions written as infinite expansions [3]. Both sequences give
perturbed orbits of f(2) if f, = f, and are thus interesting from a dynamical systems perspective

The investigation of the convergence behavior of sequences of the form (1.2) involving bilinear
transformations (1.1) goes back at least to Paydon & Wall [4] (1942) ant Schwerdtfeger [5] (1946), and
was continued by Piranian & Thron [6] (1957), and DePree & Thron [7] (1962). Later, Magnus &
Mandell [8] (1970) gave explicit results when f, — f, where f is categorized as "hyperbolic",
"loxodromic", or "elliptic" (see below). The author pursued the elliptic case further and explored the
remaining "parabolic” case [9] (1973) More recently the author investigated these cases with regard to
outer compositional structures {G,(z)} in [10] (1991), [2] (1993). Barrlund, Karlsson & Wallin [11]
(1993) have studied random inner and outer compositions of bilinear transformations—without the
requirement that f, — f.

In addition, the author has explored structures (1.2) and (1.3) for sequences {f,} of more general
complex functions in [12] (1988), [13] (1990), [14] (1992) Lorentzen has written a number of papers
concerned with convergence properties of sequences of bilinear transformations and a definitive paper on
inner compositions of more general functions [15] (1990)
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This paper focuses on a case not falling into the four categories (hyperbolic, loxodromic, parabolic,
or elliptic) mentioned above: the convergence behavior of (1.2) and (1.3) when f, — z, the identity
function, and {f,} is described by (1.1) A minor additional case is considered also f, — a, a certain
constant. Further theory is developed for the setting in which the f,'s are not necessarily bilinear
transformations but f, — 2.

The earliest results for f, — 2 are due probably to DePree & Thron [7]

THEOREM 1.1. If {F,(z)} converges to a bilinear transformation, where the f,'s are bilinear
transformations, then f, — 2.
and its partial converse.

THEOREM 1.2. If, for f,(2) := (anz +b,)/(cnz +dn), @ndn — bpc, = 1, la,, IId,, Lb,, and
Zc,, all converge absolutely, then lim,_ F,,(2z) = (Pz+ Q)/(Rz + S), where PS — RQ # 0.

The hypotheses of Theorem 1.2 are written in terms of the coefficients of f, as it is described in
(1.1). This seems reasonable, particularly in light of applications. However, there is a more "natural"
approach to the study of compositions of the form (1.2) and (1.3), one that demonstrates the similarity of
convergence behavior between { F;,(2)}, {G.(z)}, and simple iteration { f*(z)} when f, — f It is this
approach that is taken in the current paper.

We first observe that any bilinear transformation f (or f,,) having two finite and distinct fixed points
a and G (or ay, or (,) can be written in "multiplier" form (Ford [16]):

fiz)—a z—a fa(2) —an z—an,

O p-KiTp Wi me FOTR-RIZR KISl (9
Here K is called the "multiplier" of the transformation. Its value determines the character of f Equation
(1.4) coupled with the strongly geometrical nature of bilinear transformations leads to clear geometrical
convergence patterns for the iteration {f"(z)} (see Ford [16], e.g.). Using (1.4) judiciously also allows
the formulation of hypotheses written in terms of a,, 8, and K, that lead to conclusions on the
convergence behavior of { F,,(2)} and {G,(2)}.

When f is hyperbolic or loxodromic (|K| < 1), (1.4) shows that f*(z) — a, the attracting fixed
point of f, for each z # B, the repelling fixed point of f. Under rather mild restrictions on a,, &, and
K, the behavior of {F,(z)} and {G.(z)} when f, — f with |K| <1 is analogous to that of
{f™(2)}, [8], [10). In the parabolic case (single attracting fixed point a), and the elliptic case (|K| =1,
K # 1), roughly parallel behavior has been shown to exist between { f"(2)} and {F,(z)} and {G.(2)}
as well [2], [9].

However, in the present case (f(z):=2z) one finds { f"(z)} exhibiting no dynamical behavior
whatsoever, since f*(z) = z Clearly f has an infinite number of neutral fixed points, no one of which
exerts more dynamical influence than the others. Nevertheless, it will be shown that when f, — 2
"slowly”, with each |K,| <1 in (1.4), G,.(2) > a =lima, for all z with one possible exception and
F,(z) —» T, a constant, for all values of z except z = (3. Thus the "perturbed iterations" { F,,(z)} and
{G.(2)} possess virtual attracting fixed points even though z = f(z) = lim f, does not.

To demonstrate the importance of the sequence {K,} in determining "slow" versus “fast"

convergence, we have the following simple example.
EXAMPLE. f[2g=e - K,,;:;, with o # 8 and (a) K, =1—1/n, and (b) K, =1—1/n?,

fa(2)-B
n> 1 Then (a) GJ(;)EE _H ( )f‘—"‘ — 0 shows that G, (z) — G(z) = a for all z # 3, and
®) %:)@ H (1-%)=8 = } =5 shows that G(2) = 1imG,(2) = a bilinear transformation. The

same results clearly hold for F(z) = lim F,,(2)
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2. OUTER COMPOSITION
The basic theorem of this section is the following:
THEOREM 2.1. Suppose
@D O0<|Ka| <1, Kp > 1(fo = 2) o0 K, = 0(fn — ),
(i) an — a, B, — B, with a # 3, and
(ili) Z|ay — an-1| < 00, and Z|B, — Br-1| < 00
Then
1 IfIK, =0, {G,(2)}converges to « for all z € C, with one possible exception
2 IfOK, =T #0, {G.(z)} converges to a bilinear transformation
PROOF OF 1. The proof of Theorem 2.1 involves the same techniques used by Magnus &
Mandel [8] and the author [9] in the elliptic and parabolic cases for inner compositions.
We begin by solving (1 4) for f,,(z), generating the following relationships.

an = (on — KpnB,)/(Kntn ~ Ba),  bn = anf(Kn — 1)/ (Knan — B), @
¢, =(1-K,)/(Knan — B,), d,=1, provided K,a,— G, #0.

The inequality in (1.1) is equivalent to K,(a, — 6,)? #0. If K, — 1, a, — a, B, — 5, with
a#f,thenf, -2 IfK —0,thenf, —»a

Next, set
M(@) = (2= /(s = o), and Ko(z) = Kz, giving 02
A (z2) = (Boz — an) /(2 — 1). :
Thus
fu(2) = )\;l o K, 0 A\, (2).
Hence
Gn(2) = fao fa-10...0 fi(2)
=Xl own_10..0why 0wy 0... 0w (S(z)) 23)
= Ao W | o Wi(S1(2)),
where
‘LUJ(Z) = K]+1 o A,7+l OA]_I (z),
W,(2) =w,0ow;_jo...ow(2),
W,’,‘.l(z) = Wp-1 O Wp—9 O ... 0 Why1(2), and
S(z) = Ky o M (2).
We find that
w](z) = (sz + Qj)/(TJZ +1), (2.4)
where

P, = KJ(ﬁJ’l —a,)/(B; — 5-1),
9= KJ(QJ - aJ—l)/(ﬁJ - a]—l)v and
= (B-1 = B)/B; — ay-1).
The hypotheses of Theorem 2.1 imply IIp, = 0, E|g,| < 0o, and Z|r,| < co. It is of value to
introduce the following additional notation
Wi, (2) = Why 0 Whiyo1 0 ... o wha1 (2) = (Ah,,2 + B},))/(Cho,2 + Dhy),

: h h A K
with  Ap, = pre1, Bryi = @e1, Chyr =The1, and Dy =1
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Then
AL =p AR +9.C0n @3)
Ch=r At  +C, (2.6)
B} =p.Byy +¢.D5 @7
Dy =rBy+ D}, (238)
(2 5) and (2.6) give
n—-1
AZ = pnA:-l +qn (Tn+l + T]A]—l) . 29
7=h+2

It easily follows that A" has 2"~*~! terms, and, by writing out the first few terms and applying (2.9)
inductively, one gets

n - * *
LEMMA 2.1. A" = I;I D+ X TGk + 2Tk QT Gk T - + 20 Tk Qhy -+ Ty, Gkyy» Where the *
=h+1

indicates a suppression of Il p, productsand h +1 < k; < ky < ...ky; < n
Given € > 0, for h sufficiently large one has |py,,| < 1and

n

Aﬁ— H D,

J=h+1

<D Il + Y Ik kG| + -

< (f: Ir,lfjum) + (fj |r,|i|q,|)2 fo<e

h+1 h+1 h+1 h+1

Thus, for sufficiently large h and n > h, A" is bounded by 1.
n—h
Next, from (2.6), one can get C" =1y, + 3.

r,A% |, so that C} ~ 0 for large h and n > h.
1=h+2
Also, from (2.6), [C} — Ch_,| < |ra||AL_,], so that |[Ch —Ch| < 30 |r)||A},| for n>m The
J7=m+1
Cauchy condition is met, and we see that
lim C* = L(C,h) = 0. 2.10)
n—oo
The following formula can be obtained by induction on (2.5)
n n-2 n
a=Ile+> (II ,,,) gm+10m +@:Ch_y - 211)
7=h+1 m=h+1 \y=m+2
Which implies, using II p, = 0,
lim A* = 0. 2.12)
n—oo
In analogy with (2.9), (2.7) and (2.8) combine to give
n—1
B'=p,B" | +4q, (1 + Z r,B;‘_l). (2.13)
1=h+2

For € > 0 one can use a lemma analogous to Lemma 2.1 to show that, if » is sufficiently large,

n
B} - ( II Pj)Qh+1
J=h+2

D" in (12) as we did C" in (2.6) gives D = 1 for large A The Cauchy Condition then gives
lim D' =L(D,h)~ 1 214)

< € for n. > h, so that { B"} is bounded by a small positive number. Treating
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From (2.7) and (2.8) one obtains

n n—-2 n
g (1] p,)qh+1+ (11 pj)qmnmqno:-l.

=h+2 m=h+1 \y=m+2

Using [T p, = 0, it follows that
lim B* = 0. 215)

n—oo

Returning to (2.3), we choose and fix a value of h large enough to satisfy the various requirements
already described. Then, from (2 10), (2.12), (2.14), and (2.15),

A Vit Br, OVi +0
Ch Vi +D:_| " L(C,h)Vi+L(D,h)’

We 1 (Va) = as n—oo (L(D,h)=~1)

Setting V}, := Vi (2) :== Why1(S(2)), one gets
Jim Ga(2) = lim AZN W (W) = @,
provided
Vi(z)#00 if L(C,h)=0 and Vi(z)# — L(D,h)/L(C,h) if L(C,h)#0.

PROOF OF 2. Using the same set of formulae derived in the proof of part 1, one can show the
following: For large values of h, A" ~ 1, and

lim Ch=L(C,h) =0

(210
: h _ ~ v
n‘l’.ﬂ,An_L(A’h)"‘l (212)
lim D} = L(D,h) ~ 1 (2.14)
n—co
lim B = L(B,h) ~ 0. 215
n—oo
Therefore
At V. + B (1+€)Va(z)+e Az+ B
Wh Vi) = =2 1 n—1 — = .
w1 (Vh) Ch Vit D', &Vi(z)+(1+€) Cz+D ¢(2)
Hence lim G.,(z) = lim A; (Wi, (V4)) = 22, a bilinear transformation. O
n—oo n—00
Next, we look at a more general class of functions f, — 2.
THEOREM 2.2. Given a sequence of functions { f,} where f, — z. Suppose
(i) there exists a convex set S where S D £,.(S),
(ii) there exist {a,} where f.(a,) =an, € S, an > a € S, and Z|a, — an-1| < 00,
(i) |f.(2)| < K, < 1forallz € S, and K, —» 1 withI1 K,, = 0.
Then G,(2) » aforallzin S.
PROOF. First, we see that |fu(2)— fa(w)| < [ZIfi(s)|ds < Knlz —w|  implies
|fa(2) = fa(an)| £ Kulz—ap| for all 2 in S Then backward recursion using

|Gn(z) — a] = |a — an| £ |Ga(2) — an| < Kp|Gn-1(2) ~ an-1] + Knlan, — an-1| gives

|Gn(2) —a] < la—an| + (ﬁKJ) |z — ay] +Zn:(f1K,> la, — a1
i

7=2 \1=y

From this it is easily shown that G,,(z) » . O
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COROLLARY 2.1. Let f,(2) :== Kngn(2)(z2 — o) + @y, for |z2| < 1. If(i)) 0 < K, — 1~ with
NK,=0,a, =0, and (i) |fa(2)] <1, |ga(2)| £ 1, gn(2) = 1, for |2| <1, then G.(2) = 0 for
lz] <1

The proof follows immediately from Theorem 2.2.

EXAMPLES. g,(z) :=1-1/n+ z/n produces quadratic functions f.(2) = an2? + b,z + cn,
and g,(2) = (2 — v»)/(2 + v»2%) produces non-bilinear rational functions f,(z) = f;—’;%: +e, In
both instances K, := 1 — 1/n, a, := 1/n? are sufficient to satisfy conditions in the hypothesis of the
theorem.

3. INNER COMPOSITION

We turn now to the functional sequence {F},(2)} described in (1.2) and useful in studying traditional
continued fractions. This form of composition has the longest history. One of the earliest results for the
case f(z) := z is the following (DePree & Thron [7])

THEOREM 3.1. Let F,(z):= fiofy0..0 fo(2) = (Paz+ Qn)/(Rnz+S,), and fn(2) =
(@nz + by)/(cnz + dy), with a,d, — b,c, = 1. Suppose that

() Z|b,| and X|c,| both converge

(i) lan| =1+ €n, €, > 0, Ze,, diverges
Thennlgx; F,(z) =T, a constant, for all z # 0

In dynamical terms we have

COROLLARY 3.1. Suppose that the following conditions hold:

(i) Z|ay,| and Z|B,| ! both converge

@) Kn — 1
(iii) \/IKL—:%ETO%;T) 1 and Y ( 7%3;—).» 1 ) diverges

Then"lingo F,(z) =T, aconstant, for all z # 0.
PROOF. From (2.1) and a,d,, — b,c,, = 1, one gets
an, = (an - Kﬂﬂn)/An, bn = anﬂn(Kn - 1)/An» Ch = (1 - Kn)/Any (31)

d, = (Knay, — B,)/ A, where A, == \/T{: (an — B). Conditions (i), (ii), (iii) of the corollary then
imply the hypotheses of Theorem 3.1

A different set of hypotheses on the fixed points leads to a similar conclusion: the techniques of
proof of Theorem 2.1 can be used to prove an analogue of that theorem for inner composition The steps
are nearly identically, so only an extended outline of the proof is given.

THEOREM 3.2. Suppose

NO0< |Kn| <1, Kn—1(fn—2)o0 K, = 0(fa = a)

(i) an — a, B — B, witha # 5,

(i) £ |an ~ an-1| < 00, and £|8, — Bn-1| < o0, and

) IIK, =0.
Then {F,,(z)} converges to T, a constant, for all 2 € C except z = §

PROOF. We write

F.(2)= /\1'1 O Wy 0...0 Wj O Wy O ... 0 Wn—1(Sn(2))

AT o Wh o WP, (S4(2)). G2

where
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w,(2) = K; 02,0 A4 (2)

W,(2) :=w; owgo...ow,(z)

h 1(2) == why1 Owhyg0...0wn_1(2) and
5.(2) = Kn 0 An(2).

And find that
wj(z) = (P;z +QJ)/(TJZ +1), D= Kj(ﬂ,ﬁ»l - aJ)/(ﬂ] - O‘JH)r (33)
q; = KJ(aJ - a;+l)/(ﬂ] - a1+1)’ T, = (ﬂ]+l - ﬁ])/(ﬁ] - a]+l)'
Now write
W}:,l+] = Wh41 O Whe2 O ... O Whyy(2) = (A}P:+Jz + BI’:+;)/(C£+JZ + Dﬁﬂ)v
with AR, =pri1, Bhy =ans1, Cryy=rha, and Di, =1
As before
A' = poat 1B, 34
C! = ppCt_ +r,Dt_, (35
Bl =g A+ B, (36
D} =¢.Ch_y+Dh_, G
By hypotheses, X|g| and X|r,| both converge, and =K,(1+s,), where

s; = [(ay41 — ;) + (B41 — B,))/(B, — @,41). Thus T |s;| converges, and thxs implies ITp, = (TI1 K)

II(1+s,) =0ifIIK, = 0. Clearly ‘ II p,’ < 1 for h sufficiently large and n > h.
J=h+1

As before, we find that A? is uniformly bounded with regard to = if k is large enough, and is in fact
close to 0 Therefore (3.6) gives nlinolo B! = L(B, h) =~ 0. This, coupled with the recursive formula

n n—1 n
=M»+> (1] p;)rmB,’:,_wrnB:_l (39

J=h+1 m=h+2 \y=m+1

gives [Jim Al =0. Similarly, C* is bounded uniformly (and close to 0) for sufficiently large & and all
n > h. Thus lim D! = L(D,h) = 1.
N~

Therefore

n n~-1 n .
H PJ) Thel + Z H PJ)"'mDr':z-l + TnDr':—l 3G9

=h+2 m=h+2 \j=m+1
shows that lim Cch=0.
Now F.(2) =A7' oW, oWk (S.(z)), where Jlim S.(2) =(z2-)/(z-p) and lim

Wh_(Sa(2)) = lim 048 = [(B, h)/L(D, k) ~ 0 or 2 #6.  Hence lim Fo(z)=
At o Wi(L(B,h)/L(D,h)),forz# 5. O

Theorem 1.2, like Theorem 3 1, is an earlier result for the case f,(z) — 2. In terms of fixed points
we have

COROLLARY 3.2. If0< |K,|<1, K, —1,a, > a, B, — B, a# B, and I1 K, converges
absolutely, then nlingo F,(2) = (Pz+Q)/(Rz+ S), where PS — RQ # 0.

PROOF. From (3.1) it is not difficult to verify that the hypotheses of the corollary imply those of
Theorem 1.2 For the products involving a, and d, use K, =1+ (K, — 1) and observe that the
convergence of £ |1 — K,,| implies that of £ |1 — \/K,, |.
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Finally we present a simple result for sequences of more general analytic functions Actually,
Theorem 3.3 is a corollary to Theorem 2.2 [12], but its proof is so brief it is given here

THEOREM 3.3. Suppose { f,(2)} is a sequence of functions analytic on a convex and compact set
S and such that f, — z or f, — a on S, with (i) S D f,(S) for each n, (i) |f.(z)| < K, <1, and
(iii) IT K, — 0. Thennli_r'xgo F,(z) =T € S, uniformly for all zin S

PROOF. As in the proof of Theorem 2.2, condition (ii) implies |f,(21) — fn(22)| € Kn|21 — 29|
Applying the Cauchy Condition,

|[Fasp(2) = Fa(2)l S Kilfao fso.. 0 fip(2) — fao fa0... 0 fu(2)]

S KKy ... Kp|far10 fap2 0 ... °.fn+p(z) -2l < <HKJ)M -0
1

where M := diam(S). Similarly |F,,(z1) — F,(2)| < (ﬁKJ)M —Qforallz;, 20 €S 0O
1
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