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ABSTRACT. The spectral function O(t) exp( tA:), where {A:}:= are the eigenvalues ofthe
1"-1

negative Laplace-Beltrami operator -A, is studied for a compact Riemannian manifold f of dimension
"k" with a smooth boundary Of, where a finite number of piecewise impedance boundary conditions

0(N- +7,)u 0 on the parts Ofl,(i 1,...,m) of the boundary Of can be considered, such that

OR (j Of,, and 7(i 1, m) are assumed to be smooth functions which are not strictly positive
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1. INTRODUCTION
The underlying problem is to determine the geometry of a compact k-dimensional smooth

Riemannian manifold [2 with metric tensor g (goa), from a complete knowledge ofthe eigenvalues for

the negative Laplace-Beltrami operator -A ,9 c9 g-1gb-2, ga dx/ where (ga)

Let f2 be a compact Riemannian manifold of dimension "k" with a smooth botindary c9[2 Suppose
that the eigenvalues

are known exactly for the eigenvalue equation

(A+A)u=O in f2, (!2)

together with the impedance boundary condition

b--n+3, u=0 on OR, (13)

where denotes differentiation along the inward pointing normal to cgf and 7 is a smooth function

which is not strictly positive
Hsu has investigated problem (1.2)-(1 3) and has determined the geometric quantities associated

with the manifold f2 from the asymptotic expansion ofthe spectral function
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e()-Eexp(-A) as -0. (14)

Problem (1.2)-(1 3) has been investigated by many authors (see, for example, Mckean and Singer [3
and Hsu [1]) if-y 0 (Neumann problem) and have shown that

(g)/o() o +/ +,t +/ +o() as 0, 5)

where

and

a3 Kan(z) [tr H(z)] + - tr H2(z) + Ric(n)(z) dz.

In these formulae, If] is the (Pdemannian) volume of f, Ic3f is the (Pdemannian) surface area of
Of, K(x) is the scalar curvature of f at x, H(z) is the second fundamental form of the boundary
KaY(z) is the scalar curvature of c3f (equipped with the induced metric) at z, Ric(n)z is the Ricci

curvature off at z in the normal direction "n" ofthe boundary 0f, and tr H(z) is the mean curvature of

The object of this paper is to discuss the following more general inverse problem Suppose that the

eigenvalues (1 l) are known exactly for the eigenvalue equation (1.2) together with the following

pieccwise smooth impedance boundary conditions

+- 0 n On,(i , m), (

where the boundary Of of f consists of a finite number of the parts Of (i 1, m)such that

Of Of,, while denote differentiations along the inward pointing normals to Of, and % are

assumed to be smooth functions defined on Of which are not strictly positive.

The basic problem is that of determining the geometry of the manifold f as well as the impedance

functions % (i 1,..., m) from the asymptotic expansion ofthe spectral function

O(t)=Eexp(-tA) as t--,0. (17)
3=1

Note that the main problem (1.2) and (1.6) has been discussed recently by Zayext and Younis [4] and

Zayed [5-7] in the case where fl is a general simply connected bounded domain in Rk(k 2 or 3) with a

smooth boundary 02 and 7, 1, m) are positive constants

2. STATEMENT OF RESULTS
THEOREM. Let 10f,l(i- 1,...,m) be the (giemannian) surface areas of the parts

Of,(i 1, m) ofthe boundary Of respectively. Let Kaa’ (z), (i 1, m) be the scalar curvatures

of the parts Of (i 1, m) of 0f2 respectively. Let Ric(n,)(z) be the Ricci curvatures of Of2, at z in

the normal directions n, of the parts Of, (i 1, m) of Of2. Then the results of problem (1 2) and

(1 6) can be written in the form
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where

and

(4x-)/20(t) ao + at1/2 + a2t + asts/2 + O(t2) as O, (2 1)

..-|

1 1- L [trH(z)+67,(z)]dz,a2 g K(x)dx-
,=1

L {1- 12 29/’/’2a3 KOn’(z) [tr H(z)] + tr (z)

1 1 }+ g Ric(n,)(z) + %(z)tr H(z) + < (z) dz.

Note that the results of Neum conditions on 0 e obtNned om (2 l) by setting % 0

(i 1, m) which e in agreement th the results (1 5) ofNeum conditions on O
1. If is a bounded domn in R th a smooth bound 0, then Km’(z) 0,

Ric(n,)(z) O, tr H=(z) c2(z), tr H(z) c(z) where c(z) is the cuature ofO at z d if %
are positive constts then, we get the result of Zayed [5] when 1, 2 d the result of Zayed d
YouNs [4] when 1, m.

2. If is a bounded domn in R th a smooth surface 0, en Km’(z) 2kk,
Ric(n,)(z) 0, tr H2(z) k + , tr H(z) k , where k d e the o pfincipN
cuares of the bound surface O at z and if % e positive constts, then we get the result of
Zayed [6] when 1, 2 d so the result ofZayed [7] when 1, m

3. CONSUCON OF SULTS
Follong the method of Kac [2] d Hsu [l], it is sily seen that O(t) associated th problem

(1.2) d (1 6) is given by

a(t,z,)d, ( )O(t)

where the heat kernel G(t, x, y) is defin on (0, m) x x , wNch satisfies the follong
For fixed x e , it satisfies in t, y the heat equation

(o)N a(t, , ) o, (32)

d the piese impedce bound conditions

+v,(u) a(t,z,u)=o on Oa,(i=,...,m), (33)

and the initial condition

lim G(t, x, y) 6(x y), (3 4)
t---,0

where 6(x y) is the Dirac delta function located at the source point x y Note that in (3 2)-(3 3) the

subscript "y" means that the derivatives are taken in y-variables.

Thus by the superposition principle ofthe heat equation, we write

G(t, x, y) GN(t, x, y) + x(t, x, y) (3 5)
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where GN(t, x, y) is the Neumann heat kernel on f which satisfies the heat equation- -/x Gs(t,z,V) O, (3 6)

and the piecewise Neumann boundary conditions

On,v
Gg(t,x,y) 0 on Of,(i 1,...,m), (3 7)

and the initial condition

lim GN(t, x, y) 6(x y),
t---,O

(3 8)

while X (t, x, y) satisfies the heat equation

-Ei ’ x(t, =, v) o, (3 9)

and the piecewise boundary conditions

on Of, (i 1, m), (3 10)

and the initial condition

lim X(t, =, Y) 0.
t--,0

Now, the solution of problem (3.9), (3.10) and (3 11) is given by

x(t, z, )

_
ds C,s(t , , ).()a(, ,). (3 12)

From (3.5) and (3.12) we have the integral equation

a(t,x,y) aN(t,x,y) ds av(t- 8, x,z)%(z)G(s,z,y)dz. (3 13)

On applying the iteration method (see [5]) to the imegral equation (3 13) we obtain the series

a(t,=,v) (- )F(t,=,v), (3.14)

where

Fo(t, =, y) c(,, =, v),

and

m/o’ LFr(,x,y) d8 CN(t- s,x,z)%(z)Fr_l(8, z,y)dz,
t=l

(r= 1, 2,...). (3.15)

From (3.1), (3 5), (3.14) and with the help ofthe following well known estimate (see [1], [3])

(4)/- IF(t,x,x)ldx 0(t=) as 0,
r=3

(3 6)

we deduce as 0 that

(3 17)
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where ON(t) ffl G(t, x, x)dx, which has the same asymptotic expansion (2 1) with % 0

The problem now is to study the integrals of F(t, x, x), (r 1, 2) over the manifold f
LEMMA 1. We have as 0,

(47rt) k/9 Fl(t,x,x)dx- 2t %(z)dz- v/-; / _, .,(lt(le + o(t). (3

PROOF. The definition of F1 (t, z, z) d the Chapm-Kolmogorov equmion of the heat kernel

imply

z=l

Let us no mrodue the folong eli kno estimate ofheNeum hea kernel (s ])

1(l/a(t,, t() + 0(t) as 0, (3

wNch is vid uNfoy in z 0 (i 1, m).
On inseing (3.20) into (3.19) we ave at the proofofLemma
LEN . We have as 0

(4)/ (t,,)e / ()e + 0(t). (3

PROOF. From the deflation of F(,z,z) d th the help of the expression of FI(,z,z) we

deduce that

We replace %() in the above integr by %(z)+O(]z- ]) d split the inte into two intes
aeordingly Using the follong estimate for the Neum heat kernel There est positive onts

0, c such that for 1 < 0, (z, ) E x ,
GN(t,x, y)<ct-k/2exp{_ [x- Y[2}ct (3.23)

we deduce that

I las(t ,,)as(u,,)a q[u(t )]-/ Ilxp
(t ) d" (3 24)

Since the integrN in the fit-hd side of (3.24) is bound by ct-/ where c d ca are positive

conts, we deduce as t 0 that

F2(t,x,x)dx g(t,z)7,(z)dz + O(t(*-)/), (3 25)
,=1

where

g(t, z) (t u)du GN(t u, y, z)Gg(u, z, y)dy. (3.26)



402 E M E ZAYED

The fight-hand side of (3.26) can be computed by taking the first term in the series expansion of the
Neumann heat kernels (see [1 ])

Gsv(t u, y, z) 2q(t u, y, z) and GN(U, z, y) 2q(u, z, y),

where

q(t,y,z)=(4rt)-k/2exp{ lY--Zl2}at (3 27)

The explicit computation can be carried out with the help of a suitably chosen local coordinate system
and the localization principle (see ]). We leave the details of this computation to the interested reader
and we content ourselves with the statement that the leading term of g(t, z) is equal to the same integral
in the Euclidean space, i.e,

(4rt) k/2g(t, z) 4
47ru(t-u) (t-u)du _,exp 4(t-u) 4u

dy + 0(t2). (3 28)

After some reduction, we deduce that

(47rt)k/2g(t, z) 2( )X/2 f0 +0(t

+

(3.29)

On inserting (3.29) into (3.25) we arrive at the proofofLemma 2.

Finally, our result (2.1) follows immediately from (3.17), (3.18), (3 21) and the expansion of ON (t)
for the Neumann conditions on 0[2 (i 1 m).
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