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Volterra integro-differential equations with two point boundary conditions.

KEY WORDS AND PRRASES: Volterra integro-differential equation, boundary value problem,
singular equation, numerical solution.

1991 AMSSCTCLASSICATION CODES:

1. INTRODUCTION
The form ofthe equation to be considered is given by

y" .f(=,,z), 0 <_ <_ a ()

where

(z) K(x,t,(t))dt.

The function y(x) denotes the solution and is unknown. Let R1 and R2 be two sets with

R1 ((x, t, y)’0 _< t _< x _< a, lyl < oo)

and

R. ((, u, z)-0 < < , lul < oo, Il < oo).

The problem (1) is completed by adding the boundary conditions y(0) 4 and y(a) B. Under the

following assumptions.

i) f and K are uniformly continuous in each variable,

ii) for the function f and for all (x, y, z), (x, , z) and (z, y, ) E R2
If(x,y,z)- f(x,,z)l <_ Lily-1,
If(x, y, z) f(x, y, )! < L21z 1;

iii) for the function K and for all points (x, t, y) and (x, t, y) e R1
Ig(z,t,y)- K(z,t,y)l < L3Iy-l

iv) the functions fv > 0, f= > 0 and K > 0 for all (x, t, y) R1 and (x, y, z)eR2

the solution is unique. In [3], the form of the kernel function allowed for a finite number of singularities

in the range of integration. Here we consider a nonlinear kernel ofthe form

K(x,t,y(t)) S(x,t)G(t,y(t)) (2)

where S(z, t) contains the singularities associated with the function K. Following the work in [7], it is
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assumed that S(x, t) satisfies:

i) IS(x,t)ldt _< L < oo, for all 0 _< x _< a

and

ii) for every > 0 there exists a 6 6() > 0 independem ofx and a such that

for all a such that 0 < a < x .
With these additional conditions, the singular problem has a unique solution. Boundary valued problems
for ordinary differential equations have been considered by many authors. Two textbooks containing

material on numerical solutions are given in the references [6,8]. References [7,9,10] consider some

problems ofthe Volterra integro-differential equation type. singular problems are considered in [2,3,5,7].
In Na [8], ordinary differential equations with two point boundary conditions are solved by a method

of parallel shooting. The general idea here was to divide the interval of integration into a number of

subintervals and to find approximations to the solution of the differential equation on each subinterval.

Continuity of the solution from subinterval to subinterval was imposed. In [11], this method was

emended for application to second order two point boundary value problems of the Volterra type. In
contrast to this approach, which involves expressing the problem as an initial value problem, other

approaches such as that in [4] for linear problems and in [9] for nonlinear problems exist. In this article,

the parallel shooting method in 11 is reworked for application to problems which have at most a finite

number of singularities in the kernel. A numerical example illustrates the procedure and the reader is able

to compare the results ofthis indirect method of solution with the work in [5].

2. NUMERICAL METI]OI)S

Let IN={x,=kh,k =0,1 n,n=2,, h > O,nh=a} and JM={c=kq/m,k=O,1, m, me2M, M<_N}.
The methods to be considered are comprised of three distinct parts: (p, a) denotes a pair of polynomials

which characterize a linear multistep method for numerically solving a second order ordinary differential

equation; Q will denote a set of quadrature weights associated with the numerical integration of the

singular imegrand; and PS will denote a parallel shooting method associated with solving a Volterra

integro-differential problem with its boundary conditions.
k k

In particular, to establish the method (p,a) let p(z)= cz’, a(z)= /,z’ and for a
z=0 z=0

problem ofthe form y" o(x, y), we write

k k

E c,yt+, h2E/,ot+,, g 0,1, n k. (3)
=0 =0

Here yz denotes an approximation to y(z) and o qo(x, y).
To develop quadrature rules for the approximation of an integral with a singular integrand, consider

the integral

where is assumed to be continuous on [0, ] and is assumed to have at most a finite number of

singularities on [0, ] but can be simply integrated with respect to all polynomials of all degrees. Thus

’ (t)(t)dt w,() (4)

where



NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS 591

with

x3

w, ,(t)(t)dt

(t)g(,)
:(t) I] (t-g,(t)

(t- z,)Ra(z,)’ ,=0

For each j, j k, k + 1, n, a set of quadrature weights is determined. For the integrand (2),
these are collectively denoted by Q.

The third part of the method is a common method of solution for nonlinear ODEs with two-point
boundary conditions known as the shooting method. In particular, a parallel shooting method is

implemented. To describe a parallel shooting method (PS), the equation (1) is rewritten as a system of

first order equations

dy/dx u

du/dx f(x, y, z). (5)

To express (5) as an initial value problem, we have y(0) A and we set u(0) s, where s represents
the initial slope and is unknown. On each subinterval [c,, c,+1], c q J,,,, an initial value problem is

defined by

dy(’+1)/dx u(’+1)

du(’+)/dx f(x,y(’+),z(’+D), i= 0,...,m- 1 (6)

with initial conditions on each subinterval given by y(,+l)() C, and u(’+l)(c) D,. In particular,

Co A, Do s and C,, B. At each point c.,, 1, 2, m- 1, the following continuity

conditions are assumed:

y(0(Ca)- y(,+l)( C,
u(0(a,) u(’+)(c.,)= D,, i= 1,2,...,m- 1.

In general, the problem is to determine s, C,, D,, 1, 2 m 1 These conditions are expressed as:

el(D0, C) y(U(c,Do) Ca 0

(Do, D) u() (cl, D0) D1 0

3(DI, Ca, (2) y(2) (c2, D1, C1) C2 0

2,-3(D,-2, C,-2, C,-1) v(m-1) (Cm-l, Dm-2, Gin-2) Gin-1 0

qb2m-2(Dm-2, Cm-2, Dm-I u(m-l) (c-m-l, Din-2, Cm_2 Din-1 0

2m-1 (Din-l, Cm-l) y(rn) (n, Dm-, Cm-l) Cm 0.

Each unknown is determined iteratively by first expanding , in a Taylor expansion through linear terms

with respect to each argument. The initial approximations are denoted by Do1, C,1, D,, 1, 2, m- 1

The system is given by

A’AZ’ ’ (7)

where AZ’ Z’+1 Z’, Z’ (D,C],D’I,...,D’m_I)T, ’ (’,..., m_)T
and A’ is a four band

matrix with elements given by

a’k.k_l Cy[(k-1)/2]+l /Oc(k-1)/2
a’k.k COy[(k-1)/2]+l /OD(k-1)/2

a: k+l 1

k.k+2 0

for k odd, k 3(2)2m 3 and
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for k even, k 4(2)2m 2. For the remaining values, we have

.1 )/Do
1.2 --1

a.k O, k 3(I)2m- I

0.i c%(I) /OOo
0.2. O, 0,.3 1, .k O, k 4(1)2m- 1

a,,_1._,,_ Ou(’)/OC,_
-1.-1 OY() /0D,.,,-1

m-l.k O, k l(1)2m- 3.

To obtain values for the partial derivatives, the following notations are introduced

YD, OY(’+)/ODi, 0,1 m 1

UD, GqU(i+1)/OD,
Yc, --OY(’+l)/oCi, 1,2,...,m-- 1

Uc, OU(’+1) lOCi.

(Sa)

(Sb)

Differentiating the systems (8) with respect to each unknown gives rise to a system of imegro-
differential equations:

oY,/o: u,
OUz),/Ox af(x,y(x),z(x))/OD,
OYc, /a:r, Vc,
OUc,/Ox Of(x, y(x), z(x) /OC,

YD, O, Up,- 1 (9a)
O, 1 m 1

Yc, 1, Vc, 0 (95)
1,2,...,m- 1

These 2m- 1 systems of first order integro-differemial equations can be solved on their respective
subintervals.

Let/? 0 and assume a first approximation to the unknown values as follows:

1i (y(a) y(O))/mN, O, 1, m 1

C[ y(O) + i(y(a) y(O))/m, O, I, ...,.m

where N is the number ofpartition poims between c./and c.,+1 for each 0, 1 m 1.

2. Set + 1 and integrate the systems of the first order integro-differential equation (6), taking
D, D and C, C[.

3. Integrate the systems ofintegro-differential problems given by the system (9)
4. Using the values obtained in steps 2 and 3, solve the system (7) to obtain C,t+l, 0,1, m

and D+1, 0,1, m 1. If the desired accuracy between successive iterations is reached,

then stop. Otherwise, repeat starting with step 2.

3. THEORETICAL RESULTS
In this section we consider the convergence of the method. Let (p, a) denote the characteristic

polynomials associated with the method for solving a first order differential equation and let Q denote the

quadrature role

The polynomial p(z) is given by p(z)= ckz
k +... +a0 Let "A, 0,1,2 be a set of

coefficients defined by
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1/(ck + ck-lz +... +a0zk) "0 +/,z + "/2z + (10)

DEFINITION 1. The linear k-step methods for first order ODEs and defined by the polynomials

(p, a) is said to be zero-stable ifno root ofp has modulus greater than one and that roots of modulus one

be simple
Let Yz denote the exact solution of system (5) and Fxn,Yz,z(x))=(u(z),f(x,(zn),z(zn)))T

at xn e lN.
DEFINITION 2. Denote the two part method of solution by ((p, a), Q). The difference operators

L and M (notation taken from ]) associated with the method are defined by

k

L[Y’(z,,); hi (c,Y(z,,+l) h3,r’(z,.,+,)), z,.,e. IN
=0

and

where

k

M[Y(x,,); hi (a,Y(x,.,+,)- h3,F(x,.,+,,Y(x,.,+,),’(x,.,+,)))
i=0

(=.+,)

Assuming Y(x) is at least p+ 1 times differentiable, then L[Y(x,); h] can be expanded about the

point z, to give

L[Y(x,); h] CoY(x,.,) + C1y(1)(xn) +

where {C,} are coefficients independent of the function. We define the order of L to be the unique
integer p such that C, 0, 0(1)p but C,+1 # 0.

For sufficiently smooth functions F, the two operators L and M are related by

OF(x,.,+,,Y(z,.,+,),z+,)
M[Y(x,,); h] L[Y(x.); h] h_# , Oz E:+,

,--0

where

and E." (O,(z.+,) zn+,)Tn+,

For the quadrature Q, we assume that weights w,, exist which for,all f E C[0, a] and for all

0 _< x _< a, satisfy the conditions:

i) S(=, t)f(t)dt w,f(z,) 0
-’0

as h ---) O, n oo such that nh x. In addition, we assume that maxlw, O, as h O,
k oo, kh xk where the maximum is over 0 < _< k and 0 < k < n; and

ii) [0, a] can be partitioned into a finite number of subintervals with 0 z0 < Zl < < z a

such that for any k _< n, the sum of the absolute values of the weights w, associated with points

in each subinterval [z, Z,+l] can be made as small as possible. Thus for a given h sufficiently
small and any e > 0 there exists a partition of [0, a] such that for [z,, Z,+x] partitioned by

x,, Xn,+ 1

n,+l

With the above assumptions, we now define the order ofthe quadrature.
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DEFINmON 3. Let f(t) E Col0, a], q > 0. The quadrature rule Q will be said to have order q if

q is the largest positive real number such that

xk

S(zk, t)f(t)dt Wk,f(z,)
=0

<_ Ch, C < oo, VXk e Iz.

For special forms of S(x, t), the order may be non-imeger (see, [2])
For the parallel shooting method, starting values are required on each subinterval of the partition JM.

The two part method is likewise employed on each subinterval.

DEFINITION 4. The linear two part method ((p, a), Q) is said to be convergent if for all equations
ofthe form (5) subject to the conditions stated on f and K, we have that

i) ir Y, Y(x) and
nh=x

ii) for all solutions {Y,) of (3) and (4) satisfying the starting conditions Y Y(h) for which

limh-,O Y(h) Y0, j 0(1)k 1 and z for which limh_0 z 0, j 1(1)k 1.

REMARK. It is well known [6, p. 218], that zero-stability of (p, a) is a necessary condition for
convergence.

For the function, F(z, Y, z) the following notation is introduced"

i) F,, F(x, Y,, z)

ii) F F x,,Y(x,), w,,K(x,,x,,y(x,))
=0

iii)

and

Then from

( )F F x,Y(x), w,K(x,x,,y,)
i=O

k k

=o
=0 =0

subtract the same equation with approximate values replaced by exact values to get

--0

where En=Yn-Y(xn). Further, we write Fn n D(n1) +D(n2) where D(

and D2) O, F, Fn. We define Gn (gl,,)r where

gl,= ln if eO
0 if e,=O

and

.(2) if e, g: 0
ff’2n a2n en

0 if e, 0

Then IlGlloo < LF1 max(L, 1). Similarly, define 1 (r, r2n)T by

rln =0

r2 =0 ;=0

0 if I,1 =0
=0
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Then IIPlloo _< LmL3W where Lm max(L2,1) and Iw,,l _< W for all 0 _< _< N
With these notations, we can now write down a difference equation for the errors

To establish the convergence of this sequence (i.e. E, 0 as co, h 0 with ih x,), let us recall
a iemma from Linz [7, p 368]
LEMMA 1. If

then

k-1

I1 I!1,1 + T for k r, r + 1, T > 0
*=0

Il _< v, - O(1)r- 1
k-1

l,l<a<l for =r,r+l,...

THEOREM 1. Let us assume that the kernel S(x,t)G(t,y(t)) satisfies the conditions stated in
section and that the weights (w,,) exist which for all G(t, y(t)) e C[0, a] and for all 0 _< x _< a, satisfy
conditions i) and ii) of this section. Let p(z) azk + + ao satisfy the condition ofzero-stability and
assume the sequence {7,) is such that suplTl F < co. Let 7-, T*,/, B* and A be constants such that

k

T.,, ]9,d+1 and Ir,l < 7-, T" kT, z,,. ]9,g,,,+, and ID,,.I < B’, and IM.I < A for all
--0

0 _< n _< N Then every solution of

for which IIE, < E, 0(1)k I satisfies IIEII O(E’)Vx IN where

E" (NrA + ArE)
1 hrB" hrT’lwl

k

=0

PROOF. For j 0(1)n k, multiply equation (11) coesponding to m n k j by % d add
the resulting equatiom. On the led side, we get E plus tes, where we have us the fact that

a70 1 d the tes e fll zero except for those involng E, m 0(1)k 1. Each of these non

zero tes is bounded by kAY.
On the fi#t hd side, we get

h(,.-7oE. + (k,n-k-171 + k-l,n-kTO)En-I + + (B,oT- + Bo,17.--)E, + &,oT.-Eo)

=0 =0

+ + + ),E + %_ro.oEo +o- + + 7-o.

Taking norms and applying the bounds in the hypothesis leads to

IIE, < hrB" IIE, + hT’r I,,I IIE;ll + NFA + AFEk.
=0 ,=0 j=O
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Reorganizing the terms in the double sum leads to

=0 =0

where

]ws Elw,l, j O(1)n.

As a final step in organizing this equation, the terms involving llEnl] are collected and we can write

n-1 N-1

=0 =0

whre

X- 1 hrB" hrT’l’.l, M* FB*/X, N* rT’/X and E" (Nrh + ArE)/X.

Note that Iw,, [u,/,, I.
By assumption and for h sufficiently small, the interval [0, a] can be divided into a finite number of

subintervals such that hM* / hN* < I for all n _< N and nk-1 < n Thus for all points x, in the first

subinterval

E*IIEII < (1 h(M* + N’))

which follows from Lemma I. For points in the second subinterval

nt -1 n-1

IlEll < h (M" + N’I,,I)IIE, / h’ (M" + N’I,I)IIE, / E"
z--O z"-nl

Substituting into the first sum the bound for points in the first subinterval and again applying Lemma
gives

IIEII O(E’).

Since there are only a finite number of subintervals, by induction we conclude that

IIE,,II O(E*) V:r,n.IN

REMARK. For special forms of the function S(x, t), sharper expregsions for the error bound are

possible (see, [2])

4. NUMERICAL EXAMPLE
This section contains a numerical example taken from [5]. The particular method which was

employed to solve the problem is described below. Table 2 contains some numerical results

5 / 2x [ 2(1 + x) 1Y"= _y2
+- +(l+x) x

2V/X + 1 4(1 + x)] , 3

ln(2z + + 2v/z(z / )) + vq + +

with the boundary conditions y(O)= 1 and y(1)= The exact solution for this example is (x)--,-,
METHOD: For the system (6), the Milne-Simpson method defined by (p, a) where p(z) z 1

and a(z) (z + 4z + 1)/3 is used to discretize each equation. Since the integrand in the example is

such that part can be solved by usual quadrature rules and the other by product integration rules, then the

EXAMPLE:
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weights of the fourth order Newton-Gregory rules (see Table 1) are used for the former and a set of
product integration rules for the latter based on Simpson’s product integration with weights {Wk) The
weights {Wk), for k even, consist of a composite Simpson product integration rule with weights given by

wk3 .5S0 (j, k) 1.5S, (j, k) + $2 (j, k)
wk3+, So(j, k) + 2.0S, (j, k)
o+ .ss0 (j, k) 0.5S (j, )

for j O(2)k where

and

S(j,k) S(x,t)dt.

For k odd, the above rule is used on each subinterval Ix3, x:+2] for .7" O(2)k 3 and the four weights
obtained by using the Lagrange three step rule on [xk-3,xk] tO integrate S(xk, t) are given by

(,4;lk-3k (-- 1/6)S;(k- 3, k) + Sl(k- 3, k)- (ll/6)S(k- 3, k)+ S(k- 3, k)
w’k_2k (1/2)S;(k 3, k) (5/2)S(k 3, k) + 3S_(k 3, k)
Otk._lk (-- 1/2)S(k 3, k) + (3/2)S (k 3, k) S(k 3, k)

and

Wkk (1/6)S(k 3, k) (1/2)S(k 3, k) + (1/3)S(k 3, k)

where

and

S(k- 3, k)= (1/h3) fi] (t- tk_3)3S(xk,t)dt

S[(k- 3, k) (1/h2) (t- tk_3)2S(xk,t)dt

S(k 3, k) (/h) (t t_a)S(z, t)dt

S(k-3, k) S(xk,t)dt.

Note that for the system (2) there are special weights required for {v,} and {w,} to approximate the

system over [0,xl]. In particular a system of four equations is solved to find approximations for

Yl Y2 U and u2 as follows

h
Yl YO (51Z0 - 87-tl

h
Ul U0 " (5/0 -F 8/1 /2)

h
y2 yo -ff uo + 4u +

h
U2 U0 - (f0 -F 4/1 -+- f2 ).

The weights {vq} are given by {, -a2 } while for the weights {w,}, suffice it to say that the second

degree Lagrange polynomial interpolating at x x0, x, x2 is analytically integrated as a product with
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+1 over [0, Zl] The same method was used to solve each system of partial derivatives

Table 1: Newton-Oregory Quadrature Weights

n 24vn, 3 O(1)n
2 8 32
3 9 27

4 9 28

5 9 28

6 9 28

8

27 9
22 28
23 23
23 24

and for n > 6, vn 1, j + 3(1)n 3

9
28 9

23 28

Table 2 Table ofErrors

x lel(h 0.05)

0.2 4.67(-8)

[e,[(h 0.01)

6.28(- 9)
0.4

0.6

0.8

1.0

3.06(- 7) 4.07(- 9)
3.32(- 7) 2.36(- 9)
6.78(- 8) 6.89(- 10)

.55(- v) 1.18(- 9)

The method was applied using a tolerance of h For h 0.05, four iterations were required to satis
the tolerance and for h 0.01, the number of iterations was five. In [5], this problem was solved

iteratively using a system approach to approximate the boundary value problem For a step h .05, it

took five iterations to satisfy the tolerance and there was a maximum error of 10-6
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