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1. INTRODUCTION
The form of the equation to be considered is given by
¥'=fz,v,2), 0<z<a (M

where
z(z) = /01 K(z,t,y(t))dt.

The function y(z) denotes the solution and is unknown. Let R; and R, be two sets with
Rl =((1'yt,y)105 tSISav|y| < w)
and

R2 = ((x,y,Z) :0 S xz _<_ a, Iyl < 00, Izl < OO)

The problem (1) is completed by adding the boundary conditions y(0) = A and y(a) = B. Under the
following assumptions.
i) f and K are uniformly continuous in each variable,
ii) for the function f and for all (z,y, z), (¢,%,2) and (z,y,7) € Ry
[f(z,y,2) — f(z,9,2)| < Lily -7,
‘f(z)yv Z) - f(x»yr-z-)l S L?lz - Ely
iii) for the function K and for all points (z,t,y) and (z,t,7) € R
IK(J:’t;y) - K(I,t»§)| S L3|y - gl

iv) the functions f, > 0, f, > 0 and K, > O for all (z,t,y) € Ry and (z,y, 2)eR;

the solution is unique. In [3], the form of the kernel function allowed for a finite number of singularities
in the range of integration. Here we consider a nonlinear kernel of the form

K(x»tvy(t)) = S(x7t)G(t1 y(t)) )]

where S(z,t) contains the singularities associated with the function K. Following the work in [7], it is
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assumed that S(z, t) satisfies:

i) / |S(z,t)|[dt <L <oo, forall 0<z<a
0

and

ii) for every € > 0 there exists a 6 = 6(e) > 0 independent of = and o such that
a+6
/ |S(z,t)|dt < €

foralla suchthat0 < a <z — 6.

With these additional conditions, the singular problem has a unique solution. Boundary valued problems
for ordinary differential equations have been considered by many authors. Two textbooks containing
material on numerical solutions are given in the references [6,8]. References [7,9,10] consider some
problems of the Volterra integro-differential equation type. singular problems are considered in [2,3,5,7].

In Na [8], ordinary differential equations with two point boundary conditions are solved by a method
of parallel shooting. The general idea here was to divide the interval of integration into a number of
subintervals and to find approximations to the solution of the differential equation on each subinterval.
Continuity of the solution from subinterval to subinterval was imposed. In [11], this method was
extended for application to second order two point boundary value problems of the Volterra type. In
contrast to this approach, which involves expressing the problem as an initial value problem, other
approaches such as that in [4] for linear problems and in [9] for nonlinear problems exist. In this article,
the paralle]l shooting method in [11] is reworked for application to problems which have at most a finite
number of singularities in the kernel. A numerical example illustrates the procedure and the reader is able
to compare the results of this indirect method of solution with the work in [5].

2. NUMERICAL METHODS

Let Iy={zy=kh,k=0,1,...,n,n=2" h>0,nh=a} and Jy={cr=kafm,k=0,1,..., m, m=2M, M<N}.
The methods to be considered are comprised of three distinct parts: (p, o) denotes a pair of polynomials
which characterize a linear multistep method for numerically solving a second order ordinary differential
equation, Q will denote a set of quadrature weights associated with the numerical integration of the
singular integrand; and PS will denote a parallel shooting method associated with solving a Volterra
integro-differential problem with its boundary conditions.

In particular, to establish the method (p,o) let p(z) = Zk a2, 0(z) = Zk B.z* and for a

=0 1=0

problem of the form 3y’ = ¢(z,y), we write

k k
Yooy =Y B, €=01,..,n~k. ®)
1=0 1=0
Here y, denotes an approximation to y(z,) and ¢, = ¢(z,,y,).
To develop quadrature rules for the approximation of an integral with a singular integrand, consider
the integral

/0 " y(t)g(t)dt

where g is assumed to be continuous on [0,a] and % is assumed to have at most a finite number of
singularities on [0, a] but can be simply integrated with respect to all polynomials of all degrees. Thus

T, J
JRRCECEE SN @

1=0
where
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wy = / "3, ()dt
0
with

R'(t)g(zl) z
. _sz)R_J(L), R =]]¢t-=)

1=0

9.0 =

For each j,j=k,k+1,...,n, a set of quadrature weights is determined. For the integrand (2),
these are collectively denoted by Q.

The third part of the method is a common method of solution for nonlinear ODEs with two-point
boundary conditions known as the shooting method. In particular, a parallel shooting method is
implemented. To describe a parallel shooting method (PS), the equation (1) is rewritten as a system of
first order equations

dy/dz =u
dZ;d:c = f(z,y, 2). ®

To express (5) as an initial value problem, we have y(0) = A and we set u(0) = s, where s represents
the initial slope and is unknown. On each subinterval [c,, ¢,41], ¢; € Jin, an initial value problem is
defined by

dy®*V /dz = 20
dut* /dz = f(=, O, 2(t+1)), i=0,..m—-1 6)

with initial conditions on each subinterval given by 3%+ (c,) = C, and u¢*+V)(c,) = D,. In particular,
C,=A,D,=3 and C, =B. At each point ¢,i=1,2,..,m—1, the following continuity
conditions are assumed:

¥ () =y () =C,
uD(c) =u"Y) =D, i=1,2,.,m—1.

In general, the problem is to determine s, C,, D,, ¢ = 1,2,...,m — 1 These conditions are expressed as:
¢1(Do, Cy) =y (c1, D) = C1 =0
¢2(Do, D1) = uV(cy, Do) — Dy =0
¢3(D1,C1,C2) =y (e2, D1,C1) ~C2 = 0

$2m-3(Dm-2,Cm—2,Crm—1) = 4™V (cm-1, Dm-2,Crm-2) = Crn-1 =0
¢2m—2(Dm—2, Cm—2y Dm—l) = u(m—l)(cm-—l: Dm~2: Cm-2) - Dm—l =0
¢2m—1(Dm-lycm—1) = y(m)(crmDm—ly Cm-l) ~Cn=0.

Each unknown is determined iteratively by first expanding ¢, in a Taylor expansion through linear terms
with respect to each argument. The initial approximations are denoted by D}, C}, D}, i=1,2,...,m~1
The system is given by
AAZ = -0 ™
where AZ* = Z**! — 2, Z' = (D, C3, D}, .., Db )", Wt = (83, ..., %}, )" and A* is a four band
matrix with elements given by
o poy = BY DA /8C 1y 0
ajx = 0y DE D )0
Qg1 = —1
Ghir2 =0
for k odd, k = 3(2)2m — 3 and
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a} kg = 0ul¥/D [8C(i /2y
aix-1 = 0ul*/D 8Dy 0)
a;‘,k =0

1 —_
Gy = — 1

for k even, k = 4(2)2m — 2. For the remaining values, we have

al, = 3y /aD,
ajp= —1
ajr=0,k=31)2m-1
a3, = 8ul) /8Dy
659 =0,a33=—1, a6 =0k= 4(1)2m -1

Com12m-2 = 8y'™ /8Cm-1

Gn12m-1 = 0Y"™ /8D,

Uom-1.6 =0, k =1(1)2m — 3.

To obtain values for the partial derivatives, the following notations are introduced

Yp, = 8y**V/8D;,i=0,1,..,m -1 (8a)
Up, = 8u*V /3D,
Yo, =8yt /8C;,i=1,2,..,m -1 (8b)

Uc, = 9u™*Y /30

Differentiating the systems (8) with respect to each unknown gives rise to a system of integro-
differential equations:

0Yp,/0x = Up, Yp,=0,Up =1 (9a)
dUp, |0z = 8f(z,y(zx), 2(z)) /8D, i=0,1,..,m-1
8Yce, [0z = Ug, Yo, =1,U¢g, =0 (9b)
dUg¢, /0 = 8f(z,y(zx), 2(x))/dC, i1=12,..,m—-1

These 2m — 1 systems of first order integro-differential equations can be solved on their respective
subintervals.
1 Let £ = 0 and assume a first approximation to the unknown values as follows:

Df = (y(a) — y(0))/mN, i=0,1,..,m -1
C! = y(0) +i(y(a) — ¥(0))/m, i =0,1,..,m

where N is the number of partition points between ¢; and ¢,.; foreachi =0,1,...,m — 1.

2. Set £ ={+1 and integrate the systems of the first order integro-differential equation (6), taking
D, = D! and C, = C..

3. Integrate the systems of integro-differential problems given by the system (9)

4. Using the values obtained in steps 2 and 3, solve the system (7) to obtain C’f“, i=0,1,..,m
and Df“, 1=0,1,..,m — 1. If the desired accuracy between successive iterations is reached,
then stop. Otherwise, repeat starting with step 2.

3. THEORETICAL RESULTS

In this section we consider the convergence of the method. Let (p,0) denote the characteristic
polynomials associated with the method for solving a first order differential equation and let Q denote the
quadrature rule

The polynomial p(z) is given by p(z) = axz*+...+ap Let 74,i=0,1,2,... be a set of
coefficients defined by



NONLINEAR INTEGRAL-DIFFERENTIAL EQUATIONS 593

1/(0,; +ak_1z+...+aoz") ='yo+'ylz+'yzz2+... . (10)

DEFINITION 1. The linear k-step methods for first order ODEs and defined by the polynomials
(p, 0) is said to be zero-stable if no root of p has modulus greater than one and that roots of modulus one
be simple

Let Y{z,) denote the exact solution of system (5) and F{z,,,Y&,),2&)=(u(Zn),f(Zn,y(Zn),2(za) )T
atznely.

DEFINITION 2. Denote the two part method of solution by ((p, o), Q). The difference operators
L and M (notation taken from [1]) associated with the method are defined by

k
LY (za)ih] = Y (@Y (Zna1) = BAY (Tnsn)), Zneln

1=0
and

k
M[Y(xn); h] = Z (a,Y(z,,.,_,) - hﬂ,F(:c,H,,,Y(z,.+,),’2(a:,,+,)))

=0
where

n+1
2@nas) = ) W, Gty U(ty)-
7=0
Assuming Y'(z) is at least p+ 1 times differentiable, then L[Y (z,,); k] can be expanded about the
point z, to give

LY (2,); h] = CoY (zn) + C1Y V() + ...
where {C,} are coefficients independent of the function. We define the order of L to be the unique

integer p such that C, = 0, i = 0(1)p but Cpiq # 0.
For sufficiently smooth functions F, the two operators L and M are related by

k -
MY (2)H) = LY an)ib] = BY e Eonh i) g
1=0

where
21y € INT (3(@ns), 2(Znse) and Ejy, = (0,2(%ns) = 204a)T
For the quadrature @, we assume that weights wp, exist which for,all f € C[0,a] and for all

0 < z < a, satisfy the conditions:

)

/0 ’ S(z, )f(t)dt — Y wnf(z.)| = 0
=0

as h = 0, n — oo such that nh = z. In addition, we assume that max|wy,| — 0, as h — 0,
k — 00, kh = z; where the maximumisover0 <i< kand0 < k < n;and

ii) [0,a] can be partitioned into a finite number of subintervals with 0 =2 < 2z <.. <z, =a
such that for any k < n, the sum of the absolute values of the weights wy, associated with points
in each subinterval [z,, z,,1] can be made as small as possible. Thus for a given h sufficiently
small and any € > O there exists a partition of [0,a] such that for [2,,2,.1] partitioned by
Tn, ey Tnyy — 1

M1 ~1

Z |wh:+1—1.7| <e

=n

With the above assumptions, we now define the order of the quadrature.
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DEFINITION 3. Let f(t) € C?[0,a], ¢ > 0. The quadrature rule Q will be said to have order g if

q is the largest positive real number such that

Tk k
/ Sz, O)f(t)dt — Y wiaf(z:)| < ChI, C < o0, Yy €ly.
0

1=0

For special forms of S(z,t), the order may be non-integer (see, [2])
For the parallel shooting method, starting values are required on each subinterval of the partition Ju.
The two part method is likewise employed on each subinterval.
DEFINITION 4. The linear two part method ((p, o), Q) is said to be convergent if for all equations
of the form (5) subject to the conditions stated on f and K, we have that
i) ,llll"l(l) Y, =Y(z) and
nh=z
ii) for all solutions {Y,} of (3) and (4) satisfying the starting conditions Y, = Y,(k) for which
limy o Y,(h) =Yy, j = 0(1)k — 1 and z; for which lim_o 2,=0,j=1(1)k- 1.
REMARK. It is well known [6, p. 218], that zero-stability of (p, o) is a necessary condition for
convergence.
For the function, F(z,Y, z) the following notation is introduced

1) Fn=F(xnranzﬂ)

i) P = F (o Y@ £ wn o2 u(2))
1=0
and
lll) ?‘ = F(xmY(zn)yzme(xmznyt))~
1=0
Then from

k k
Z atyn+z - hz ﬂlFﬂ-Pl =0

1=0 1=0
subtract the same equation with approximate values replaced by exact values to get

k
Mnh = Z (axEn-H - ﬁt(FfH'l - ?‘))

1=0

~

- T
where E, =Y, —Y (z,). Further, we write F,,~F,, = Dfll) +D? where DY = (dg:‘), (:)) =F,~-F,
@ _ @\ _® _3 _ T
and Dy’ = (0,d,;,) ) = F, — F,. Wedefine G, = (gin,g2)" where

R = ICON A
" 0 if e, =0

and

gon = dgﬁ)e;l if e,#0
" 0 if e,=0

Then ||Gp|joo < Ly = max(Ly,1). Similarly, define R, = (r1,,70,)" by
Tin = 0

-1
@ (Z" |e,|) it 3 Jed #£0

1=0 =0

0 it 3 fe =0

1=0

Ton =
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Then || R.||,, < LpeL3W where Ly = max(L,,1) and |w,,,| < W forall0< i< N
With these notations, we can now write down a difference equation for the errors {E,}

k k k m+t
Z atEm+t =h Z ﬂigm+tEm+t + Z ﬂxdmﬂz wm+z~]EJ + Mmh~
1=0 1=0 =0 =0

To establish the convergence of this sequence (i.e. E, — 0 as¢ — oo, h — 0 with ik = z,), let us recall
a lemma from Linz [7, p 368]:

LEMMAL If
k-1
lel <D law] le| +T for k=r,r+1,...T >0
1=0
lex] <m, k=0(1)r -1
k-1
Z‘akz| <ax<l for k=r,r+1,..
1=0
then
lel < T+017, k=rr+1,...
l-a

THEOREM 1. Let us assume that the kemnel S(z,t)G(t,y(t)) satisfies the conditions stated in
section 1 and that the weights {wy, } exist which for all G(t,y(t)) € C[0,a] and for all 0 < z < a, satisfy
conditions i) and ii) of this section. Let p(z) = axz* + ... + oy satisfy the condition of zero-stability and
assume the sequence {~,} is such that sup|y,| =" < co. Let 7,T*, 3, B* and A be constants such that

k
Tm: = ﬁzdm-ﬂ and ITrm' <, T = kT, ﬁx.m = ﬂ:gm«}-z and Z: I,mel < B‘, and anhl < A for all

1=0
0 <n < N Then every solution of
k k k n+1
Z En,=h Z ﬂ:.m+zEm+x +h z Tma Zwm+z~_1EJ + M (1)
1=0 =0 =0 7=0

for which ||E,|| < E, i = 0(1)k — 1 satisfies || E,,|| = O(E*)Vz, € Iy where

g+ — _ (NTA + ATEk)
" 1— AT'B" — ATT* |wp,|

k
and A=Y |ai
1=0
PROOF. For j = 0(1)n — k, multiply equation (11) corresponding to m = n — k — j by v, and add
the resulting equations. On the left hand side, we get E,, plus terms, where we have used the fact that
a0 = 1 and the terms are all zero except for those involving E,,,, m = 0(1)k — 1. Each of these non
zero terms is bounded by kK AET.

On the right hand side, we get
h(Bkn-kY0En + (Ben-k-171 + Pr-1.n-k70)En-1 + ... + (B10Yn—k + Bo.1¥m—-k-1)E1 + BooVa-rEo)

n-1

n
+ h(‘/oTk,n-1Z Wi By + (Y0Tk-1n-k-1 + NThnk-1)D_  wn1.EL
1=0 1=0

1
+ oot (k11 + Tk1T00) Y wr, By + 7n—kTo.owooEo) +70An—k + - + -k Ao
1=0

Taking norms and applying the bounds in the hypothesis leads to

IEall < RTB" Y |E|| +RT'TY > |w,| | Byl + NTA + AT Ek.
=0 =0 3=0
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Reorganizing the terms in the double sum leads to

IEall < hTB* Y ||E.|| + RT'TY . (|| |E.]l) + NTA + ATEk
1=0 1=0

where

!w:']| = letjlr ji=01)n.

=]

As a final step in organizing this equation, the terms involving || E,,|| are collected and we can write

n-1 N-1
IEall < AM™ D (B + AN D" fut,| (Bl + B
1=0 1=0

where
X=1-h'B" - h(IT"|,,|, M*=TB*/X, N*=TT"/X and E* = (NTA + ATEk)/X.

Note that |wn,| = |/,

By assumption and for A sufficiently small, the interval [0, a] can be divided into a finite number of
subintervals such that AM* + hN* < 1foralln < N and ny_y <n Thus for all points z,, in the first
subinterval

E‘
E|N<L i
Il < (1—-h(M*+N))
which follows from Lemma 1. For points in the second subinterval
n—1 n-1
IBal SBY (M + N'lwnuDIEN + R (M" + Nlwn )| .| + B
=0 1=n;
Substituting into the first sum the bound for points in the first subinterval and again applying Lemma 1
gives
| Enll = O(E™).

Since there are only a finite number of subintervals, by induction we conclude that
“En" = O(E‘) VI,,GIN .

REMARK. For special forms of the function S(z,t), sharper expressions for the error bound are
possible (see, [2])
4. NUMERICAL EXAMPLE

This section contains a numerical example taken from [5]. The particular method which was
employed to solve the problem is described below. Table 2 contains some numerical results

EXAMPLE:

/= Y 5+ 2z _{2(1+z)5—1
2/T+1 41 +2)} 3

ln(2z+1+2\/a:(:c+l))} +/0'(z\-/+21 +1+t)y(t)dt
1

with the boundary conditions y(0) =1 and y(1) =71,_; The exact solution for this example is y(z) =7

METHOD: For the system (6), the Milne-Simpson method defined by (p, o) where p(z) = 22 — 1
and o(z) = (22 +4z +1)/3 is used to discretize each equation. Since the integrand in the example is
such that part can be solved by usual quadrature rules and the other by product integration rules, then the

+(1+z)x
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weights of the fourth order Newton-Gregory rules (see Table 1) are used for the former and a set of
product integration rules for the latter based on Simpson's product integration with weights {wk;} The
weights {wy;}, for k even, consist of a composite Simpson product integration rule with weights given by

Wiy = 550(.71 k) - lssl(J)k) + SZ(j) k)
Wiyl = S()(j, k) +2.05; (], k)
wh+2 = .5So(j, k) - 0.551 (], k)

for j = 0(2)k where

So(s,k) = (1/h?) / o (t - t,)2S(zs, t)dt

SiG.0) = 1/m) [ 7 6~ 1,)S (2, )t
and

Ty+2
S2(j, k) = / S(z, t)dt.
zy

For k odd, the above rule is used on each subinterval [z, z,.o] for 7 = 0(2)k — 3 and the four weights
obtained by using the Lagrange three step rule on [z,_3, z«] to integrate S(zy, t) are given by

wi_3x = (— 1/6)Sy(k — 3,k) + Sy(k — 3,k) — (11/6)Sy(k — 3,k) + S (k — 3, k)

Wi_or = (1/2)Sy(k — 3,k) — (5/2)Sy(k — 3,k) + 385 (k — 3,k)

Wy = (—1/2)Sh(k — 3,k) + (3/2)S,(k — 3,k) — Sy(k — 3, k)

and
whe = (1/6)Sh(k — 3,k) = (1/2)S)(k — 3,k) + (1/3)Sh(k — 3,k)
where
sk =3,k) = (m%) [ (¢ - tes)*S(ai it
1k —3,k) = (1/h?) /zk (t — tk_3)’S(zk, t)dt
Syl = 3,0 = (/) [ (= th-0)S(ap D)dt
and

Si(k—3,k) = / S(z,t)dt.

Note that for the system (2) there are special weights required for {v,,} and {w,} to approximate the
system over [0,z;]. In particular a system of four equations is solved to find approximations for
v1,¥2,¢1, and ug as follows

h

Y1—Y% = 5(51‘0 + 8uy — up)
h

Uy —up = 1—2(5fo +8f1— fa)
h

Yo— Y = g(uo +4uy + ug)
h

U —ug = g(fo +4f1 + fo).

The weights {v,;} are given by { &, &, 77 } while for the weights {w,,}, suffice it to say that the second

degree Lagrange polynomial interpolating at z = z¢, 1, T2 is analytically integrated as a product with
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%tl over [0,z;] The same method was used to solve each system of partial derivatives

Table 1: Newton-Gregory Quadrature Weights

n 24v,,,,7 =0(1)n

2 8 32 8

3 9 27 27 9

4 9 28 22 28 9

5 9 28 23 23 28 9

6 9 28 23 24 23 28 9
andforn > 6, v, =1,7+3(1)n -3

Table 2 Table of Errors

Z, | lex](h =0.05) | |e,|(h = 0.01)
0.2 | 4.67( - 8) 6.28( - 9)

0.4 |3.06(—7) 4.07(-9)

0.6 | 3.32(-7) 2.36( - 9)

0.8 | 6.78( - 8) 6.89( — 10)
1.0 | 1.55(-7) 1.18( - 9)

The method was applied using a tolerance of h* For h = 0.05, four iterations were required to satisfy
the tolerance and for h = 0.01, the number of iterations was five. In [S], this problem was solved
iteratively using a system approach to approximate the boundary value problem For a step h = .05, it
took five iterations to satisfy the tolerance and there was a maximum error of 1075
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