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ABSTRACT. Let X be an arbitrary non-empty set, and let be a lattice of subsets ofX such that },
X E . We first summarize a number ofknown conditions which are equivalent to being normal. We

then develop new equivalent conditions in terms of set functions associated with/z E I(), the set of all

noa-trval, zero-one valucl tely addittre measures on ttie a/geOra generated-6y L We ffar
generalize all the above to the situation where 1 and 2 are a pair of lattices of subsets of X with

’1 c 2, and where we obtain equivalent conditions for to coseparate E2.
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1. INTRODUCTION
Let X be an arbitrary non-empty set, and let be a lattice of subsets ofX such that t, X E E.
Various necessary and sufficient conditions for the lattice E to be normal are known (see [4,5,6]),

and we summarize a number of these in section 2. We then give new necessary and sufficient conditions

for the normality of E in section 3. These conditions are in terms of set functions associated with a

E I(E), where I(E) is the set of non-trivial, zero-one valued, finitely additive measures on the algebra
generated by .

Section 4 is devoted to the more general situation of a pair of lattices E and E with E1 c E2 and

for which E1 coseparates E2. If E E, then E1 coseparates itself if and only if it is normal. We
proceed, at first, to give necessary and sufficient conditions for E1 to coseparate E2 which extend known

necessary and sufficient conditions for normal lattices which are summarized in section 2. Then we

extend our new conditions for normality, to conditions both necessary and sufficient for E to coseparate

E2 in terms of set functions associated with a # Jr(E ).
We begin in section 2 with a brief summary of the notation and terminology used throughout the

paper. Related matters can be found in [2,4,6]. We then turn our attention to normal lattices, and follow

the program indicated above.

2. BACKGROUND AND NOTATION
Here we summarize briefly the notation and terminology that will be used throughout the paper

Most of this is standard by now and follows that used in 1,3,4,7] for example. We will also assume for

convenience that all lattices considered contain the and X.

X is an arbitrary non-empty set and E a lattice of subsets ofX. A(E) denotes the algebra generated

by E, and I(g) those non-trivial, finitely additive, zero-one valued measures defined on A().
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denotes those/z E I(E), which are E-regular, i.e

#(A) sup{/(L)lL C A, L E/:}

where A 4(/:). We note, that/ In(/:) if and only if# I(/:), and

(L’) sup{(L)lL c L’,L /:}
where L E/:. Here L’ X- L, and we denote by/:’ {L’IL /:}. /:’ is the complementary lattice
to/:.

We note that there exists a one-to-one correspondence between all prime/:-filters and 1(/:) given by
associating with/ I() the prime/:-filter

.T" {L E/:I(L) t}. (2.1)

Similarly, there exists a one-to-one correspondence between all/:-ultrafilters and In(l:) given by the
same collection as in (2.1) only now/ E In(l:).

Finally, we note that if 7"/is any collection of sets of/: with the finite imerseetion property, i.e. the
intersection of any finite number of sets of 7"/is non-empty, then there exists a/ E In (/:) such that

#(A) 1 for all A E 7.

Io(/:) denotes those # 6 I(/:) such that / is a-smooth on /:, i.e. if L, E/: and L, 0 then

/(L,) 0. There is a one-to-one correspondence between Io(/:) and all prime /:-filters with the
countable intersection property.

I () denotes these/ E I(/:) that are a-smooth on A(/:), or, equivalently, are eountably additive.

I() Io(/:) N In(E.), and it is easy to see that if# e I.,(/:) then/ e I
If# I(/:), we denote by #’ the following set function defined on 79(X) for E C X,

#’(E) inf{#(L’)lE C L’,L E

/ is a finitely subadditive outer measure.

If #, v are set functions defined on/:, we write # _< (/:) if/(L) _< v(L) for all L E/:. It is now
clear that

# e In(Z:) if and only if # #’(/:). (2.2)

A set function defined on/: is called modular if v(Lz U/-2) + v(L rq/.) v(Lz) + v(/.), for
all L, L E/:. If v(L U L) + v(L1 Cl L) _< v(L) + v(L) for all L,/. E/:, then is called sub-

modular, and superrnodular ifthe inequality is reversed.

We recall that/: is countably compact (c.c.) if and only ifI(/:) Io(/:) or, equivalently, if and only

if/n(/:)
is countably paracompact (c.p.) if A, 0, A,, e implies there exists Bn E , An C B O.

Clearly if is c.p. then Io(’) C Io().
is a normal lattice if for any A1, A2 E with A1 N A2 (Z) there exist B, B; E with

A, C Bi, A2 C B and B f’l B O.
We summarize some equivalent characterizations ofnormality in the following theorem (see [4,5,6]).
TIiEOREM 2.1. is normal (where 0, X ) is equivalent to any ofthe following:

1) For each # E I(/:), there exists a unique v In(/:) such that # _<
2) For any I(/:) and v In(l;) such that # < v(/:) then/ < v v’
3) If# < v(/:) where/2 E I(/:), v E In(/:) then v(L’) sup{v(L)l c L’,L e } where L
4) IfL C L UL where L, L,/,2 E/:, then L A U B where A, B and A C L, B C L.
5) For any/ E I(/:), .T" {L /:I’(L) 1} is an/:-ultrafilter.

Further characterizations of normality will be developed in section 3. We just note one consequence
of normality. We denote by I(/:) those/ I(/:) such that/(L’) 1 implies there exists an



NORMAL LATTICES AND COSEPARATION OF LATI’ICES 555

C L’, and/’ () 1 where L . If L: is normal, then l(L:) IR(L:). The converse, however, is
not tree in gen.

If we ve a p of las, , 2 of subss of X th 1 C 2, d if p I(2) then its
refiion to (]) ll be doted by[ or simply p[ ifthee is no biW.

In gen ifwe have a pr oflauis, 2 we de.e:

1 sstes 2 if for l A , B 2 such t A B , there es A] ] such

thatBcAdAA=0.
pates 2 if for M1 B, B2 2 such tt B B2 0, there sts A, A2 uch thin

B1 C A, B2 c A2 d A A 0.
cosepates 2 for MI B, B2 such that B B ,rsts A, A2 1 uch that

B1 C a, B2 C a dA A 0.
2 coocates A C Bi U B6, where A 1, B1, B2 , then there ests A, A2 1

such that A A] O A2, A] C B md A2 c B.
Under our smpfion that MI lances involv conn 0, X d assung that l C 2,

]cosepates 2 ifd oy g2 tes].
Finely, v is a fite omerme (either fitely mbadditiv or coumably subadtive) defined on

P(X), we dote by Sv the v-meurable s, so

v {E C X[v(G) v(G E) + v(G E’) for MI G C X}.

v is regular if for any A C X, there exists an E ,5 with A C E and v(A) v(E). If v is a

regular outer measure which is finite then

S {E C XIv(X) v(E) + v(E’)}.

If v is any outer measure that just assumes the values zero and one, then v is clearly regular.

3. NORMAL LATTICES
In this section we wish to get characterizations of normal lattices in terms of certain set functions

associated with a /2 I(). In the presence of normality, these set functions have been investi-

gated [2,4,5,6]. We will summarize briefly these results, but we wish to go beyond this, and show that

properties of these set functions can be utilized to give necessary and sufficient conditions for a lattice to

be normal.

DEFINITION 3.1. Let p I() and let E c X.
a) /,(E) sup{/(L)lL C E,L }.
b) (E) inf{/,(L’)[E C L’,L }.

It follows readily from the definition that, for # I(),
, < < p’(), and (3.1)

,, < # ,’(’).

Now, we have

THEOREM 3.1. If is a normal lattice and if I(), then

a) #i is finitely additive and finitely subadditive on ’.
b) is a finitely subadditive outer measure.

PROOF. a) Let A, B , and suppose /i(A’O B’)= 1. Then there exists L such

that L C A’ t3 B’ and #(L) 1. From Theorem 2.1 part 4 of section 2, it follows that there exists

A1, B1 L with L A1 t3 B1, A1 C A’, B1 c B’. Thus /(L) _</(A1) +/z(B1), consequently,

#(A1) 1 or /(B1)= 1. By (3.1) this implies that #,(A)= 1 or /,(B)= 1 so /,(A’)= 1 or

#,(B’) 1 since #, is monotone. It is now clear that pi(A’U B’)</i(A’) + #,(B’) for any A,
B . Again, if #,(A’ t3 B’) 1 and if A’ l’3 B’ , A, B ,, then using the previous notation
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A1 f B1 0, and 1 #(L) #(AI t3 Bl) #(A1) + #(B1). Say, #(A1) 1 and #(B1) 0, and
clearly #i(A’) 1 and #i(B’) 0 from which the additivity of#, on L;’ follows.

b) Clearly (0) 0, is monotone, and all we need prove is the finite subadditivity of. Let E1
and E2 be arbitrary subsets with g(E1 O E2) 1. Then #,(L’) 1 for all L D E1 O E, L E . If
both g(E1)=0 and g(E2)=0, then there exists L, L E/;’ with L D El, L D E2 and

Iz,(L) tzi(L)=0. Then L tJL D E1 U E2 and #i(L OLd)=0 by part a), which is a

contradiction, and completes the proof.
Since g is a finitely subadditive outer measure, we denote by ,., the g-measurable sets, i.e.,. (E c X]’fi(G) "(G N E) + -fi(G N E’) for all G c X}.

Clearly ,5 is an algebra, and since p and, therefore, g just assume the values 0 and 1, we have

,-.qa (E C XI’fi(X) fi(E) + "fi(E’)}.

Now we show

TIIEOREM 3.2. If L: is normal and ifp I(L:), then A() C .
PROOF. We need only show that if L e L:, then (X) > g(L) + g(L’). Suppose g(U) 1. By

(3.1), this implies #,(L’) 1. Hence, there exists L e , C L’ and #(,) 1. Since L f3 L , and

since is normal, there exists B, B with L C B, , C B and B f3 B . Clearly,

#(B) 1 and #(B) 0. Thus g(B) 0 by (3.1), and g(L) 0. Thus g(L’) and g(L) can’t both
be one, which completes the proof.

Finally we have

THEOREM 3.3. If is normal and ifp E I() then

a) 1) I(:), and

b) ’().
PROOF. a) Since g is a finitely additive measure on ,., it follows that glct(:) e I(E).
Also, for L L,

g’(L) -inf{(A’)lL c A’,A

but g #,(’). Thus ’ g, therefore, glt(:) IR() (see section 2).

b) Since # _< g(L), by a) and by normality (s section 2), # _< g g’ #’().
Let v be a set function defined on all subsets ofX. Recall v is submodular if and only if

v(E1 E’2 + v(E1 CI E’2 <_ v(E1) + v(E2

for all El, E2 C X.
It is easy to see that the following holds.

LEMMA 3.4. If is a monotone set function defined on all sets E C X that assumes only the

values 0 and 1, then v is finitely subadditive if and only if is submodular.

Now we establish:

THEOREM 3.5. If # E I(), then is normal if and only if is submodular (or equivalently if and

only if is a finitely subadditive outer measure).
PROOF. If is normal, then is a finitely subadditive outer measure by Theorem 3.1 b), and,

therefore, submodular by the Lemma.

Conversely, suppose is submodular. If : is not normal, then there exists A1, A2 L such that

A1 A2 0, but for all B, B :’ with A1 C B, A2 c B., we have B B :/: 0.
This implies that the set

B={B’e’[B’DA1 or B’D
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has the finite intersection property. Consequently there exists a # E IR() such that #(B’)= 1 for
all B’ E/3. Hence, /z(B)= 0 for all B’ 6/3, which implies /z,(A)= 0 and /z,(A)= 0. Thus,
(A) (A)= 0 by (3.1). But 1 (X)= (A t3 A)= 0 which is a contradiction since is

submodular.

As our characterization theorem, we have
TBXOREM a.6. If I(), then ; is normal if and only if
PROOF. If’Z: is normal th =/z’() by Theorem 3.3 part b).
Conversely, suppose =/z’(L;) and/2 is not normal. Then using the same notation and construction

as in Theorem 3.5, we have #,(A) 0, while A1 C B’, B implies/z(B’) 1, but A1 c A. Thus

(A1) 0, while clearly/z’(A1) 1. This contradiction proves the theorem.

4. COSEPARATION OF LATTICES
In the present seion, we will extend the results of sections 2 and 3 on normal lattices to a pair of

lattices /21 and 2 such that 1 C 2, and where 1 coseparates
coseparates itself if and only if it is normal. The work done here also extends that done in [2,5,6].

Our first result directly generalizes Theorem 2.1 part 1).
THEOREM 4.1. Let and 2 be lattices of subsets of X such that

coseparates 2 if and only if for any p I() and any r,1, v2 E IR(2) such that/ _< r,(1) and. _< v2(1) then vl v2.

PROOF. 1) We assume that 1 coseparates 2. If vl :/: 2 then there exists B1, B2 2 such that

vl(B1) 1, v2(B2) 1, and B1 B2 . Hence, there exists A1, A2 1 with B1 C A, B2 C A
and A A . Consequently, A1 A2 X so /(A1) 1 or #(A2) 1. But A1 C B, and

vl(B) 0, so vl(A1) 0; hence p(A1) 0. Similarly A2 C B, and v2(B) 0 so p(A2) 0, from
this contradiction, we conclude that vl ’2.

2) Conversely, assuming the condition ofthe theorem holds, if] does not coseparate/22 then there

exists B1, B2 2 such that

has the finite intersection property. Therefore, there exists a/ I() such that/a(A’) 1 for all

A’ E H. Now let L1 with #(L1) 1. Then (L) 0 so L] 7. Hence, L1 1 B ) arid

L1 B2 for all L1 e 1 with/(L1) 1. Thus ifwe let

H1 {L2 21L2 2 L1 B1,L1 . 1 with /(L1)= 1},

and

(L2 e 2[L2 L CB2,L1 e with (L1)

then H1 and H2 are 2-filters Consequemly, there exists vl, v2 E IR(2) such that v(L) 1 for all

L H1 and v2(L) 1 for all L2 e H2. vl :f- v2 since B1
Also # _< v1(1) since, if A E1 and #(A)= 1 then A ell, clearly, so vl(A)= 1; similarly

p _< v( which completes the proof
The next theorem generalizes Theorem 2.1 part 2).
THEOREM 4.2. Let 1 and /22 be lattices of subsets of X such that

coseparates 2 if and only if for any p e I() and v

_
Is(2) such that / 5 v(1), we have

v ’(2).
PROOF. 1) Suppose 1 coseparates 2. Clearly v’ _< #’. Suppose v(L2) 0 where L2 2.

Then t,(L) 1; hence L D , E and v(L) 1. Now L2 rL so there exists L], L e ,
., () (),2CLI,LCL and LAL =, so v ’1 =1, and, therefore, /z "1 =1. Consequently,

/z(L) 0, so/z’(L2) 0. This implies that
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v v’= ’(=).

Conversely, if this condition holds, and if/, E I(I), and vl, v2 E I.(2) with/ < v1(1)
then Yl d #(2) and v2 d --/(2), so 1 v2, and 1 coseparates 2 by Theorem 4.1.

Note: Clearly Theorem 4.2 is equivalent to the following: Let 1 C 2 be lattices of subsets ofX,
and let # I(1) and v IR(2) be arbitrary with # < Y(1). Then 1 coseparates 2 if and only if

v(B) 1, B 2, there exists an A 1 with A C B, and p(A) 1. Clearly this result extends
Theorem 2.1 part 3.

We now extend the comment following Theorem 2.1.

Theorem 4.3. Let 1 and 2 be lattices of subsets ofX such that 1 C 2. Also let 1 coseparate

9.. Then, iffor/EI(1) and v I(2) with # < v(1) and with v(B’)=sup{(A)[A C B’,A1},
B 2, we have v IR(2).

PROOF. Suppose v(B’) 1, where B E 2. Then there exists A , A C B’ and ’(A) 1.

Since 1 coseparates 2 there exists A1, A2 1 with A c A, B C A, and A
A C A C Ag_ C B’. Thus i’(Al) 1 l(A’), so/(Ag.) 1. Hence v(A2) 1, and Ag. 1 C 9.
so v E

We recall:

DEFINITION 4.1. The lattice is almost countably compact iflu(’) C Io().
Clearly if is countably compact then is almost countably compact. While, if is normal,

countably paracompact and almost countably compact, then is countably compact.
THEOREM 4.4. Suppose 1 C 2 and 1 coseparates 2. If/ lo(1) and v E I(2) such

that < v(1) then v Io().
PROOF. If v q Io(), then there exists a sequence {B}, B,, 9. such that B’. $ 0 and

v(B’) 1 for all n. By the note after Theorem 4.2 there exists A, 1 with A, C B and (A,) 1

for all z. Clearly, we may assume A,, , so A, L 0, which implies 6 Io(1), a contradiction.

THEOREM 4.5. Let 1 C u and 1 coseparates . Ifv Iu() and if1 is almost countably

compact then v E Io (22).
PROOF. Let A vl,(:,). A In(1), and since 1 is almost countably compact, there exists a

I,() such that

Now, by Theorem 4.4, it follows that v I(), which completes the proof.
REMARK. Under the assumption of Theorem 4.5, if in addition, I,(E6)C 1o(9.), then

v I(9_), in which case 2 is countably compact.

We now wish to extend the results of Theorems 3.1-3.3, to the situation of a pair oflattices 1, 9.
with 1 C 9.. We define for # E I() and any E C X.

a) /i(E) sup{/(L1)ILI C E, L1 1}-
b) -fii(E) inf{pi(L)lE C Lt2,L2 . 2}.

Arguing analogously to the proofs in Theorems 3.1-3.3, we obtain readily,

THEOREM 4.6. Let 1 C 9. and let 1 coseparate 2. Then, for/ I( ),
a) p, is finitely additive and finitely subadditive on 9_’.

b) is a finitely subadditive outer measure.

c) A(=) c .
d) v IA(z:,) e Iu(2), and #

_
P(1).

Furthermore, adhering to the above notation, we have

THEOREM 4.7. 1 coseparates 9. if and only if

G (Lu e 21;*’(L2)- 1}
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is a prime 2-filter for any # e I(1 ).
PROOF. 1) If1 coseparates 2 then//=//’ ’(2) since// I/(2) and using Threm 4.2.

From this it follows immediately that p’ is modular on 2 and , is a prime 2-filter.
2) Suppose for any # I(1), , is a prime 2-filter. If 1 does not coseparate 2, then, by

Theorem 4.1, there exists p I(1),//1,//2 I,(2) with //1 //2, and such that p _<//1(1) and
t

_
//2(1 ). Hence

, _< ’(),

and

_< ’().

But , is a prime 2-filter, while vl and v2 determine 2 trters. Thus, we mu have v v2, a
non. H, cosates.

Nero, we end Theorm 3.5.

OM 4.& Conug th the notation prior to

cosepates if md oy if is bmodul or, uivfly, a tely subaddifive omer mse for
my I().

PROOF. 1) If is submodul, the prairie, is bmodul on. However, ,(),
so , is submodul on . H ’ is supodul on

’(B) I ’(B2), th ’(B B2) 1, md clly , is a prime 2-filter,
by rem 4.7.

2) Converly suppo sepates 2, en by rem 4.6 b) is a fitely subadtive outer

mease fory I( ).
We note if 1 sepates 2, en v P’(2) since I(2) d by Theorem 4.2,

howler, v (2), ’(2).
Suppose convsely for y p I(x), p’(2). We note for y E C X, p’(E) + ,(E)

(x) .
If does not osepate 2, then there ests B, B2 6 2htt B B2 , d

{A’ e IA’ B,, or A’ B}

has the fite imerson prope. Conutly thee es a

A’ D B or A’ D B then (A’) 1. nene, ’(B1) ’(B) 1. Thus ,(B) 0. But, B c B,
(B 0, a omradion. Therefore,
Sg,we haveedThrm 3.6 to:

OM 4.9. Using e ove notation

e I(,).
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