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ABSTRACT. The generation of proper classes of short exact sequences of modules by subclasses s

considered. The class generated by two proper classes is studied by means ofsome operations between

these classes These operauons are investigated m details for classes of short quasi-splitting, torsion-

sphtting and pure exact sequences ofabelian groups.
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1. INTRODUCrlON

By module we mean a unitary left Romodule, R being an associative ring with tdentty and by

group we mean a Z-module, i.e. an abelian group.
Let be a class ofshort exact sequences of modules. If a short exact sequence

E:0 A B >C 0 (1 1)

belongs to/, ot is said to be an R-monomorphism and 13 an R-epimorphism. A short exact sequence E is

determined by each of the monomorphism t and epimorphism 15 uniquely up to isomorphism. In the

case of necessity, without loss of generality, we shall regard any monomorphism to be an inclusion

map B stands for the end of the proof. We use the terminologies and notations of Fuchs [1] and

Mac Lane [2].
DEFINITION. The class is said to be proper, if it satisfies the following conditions (see

Buchsbaum [3], Mac Lane [2], Sldyarenko [4]):
(P-1) Along with any short exact sequence contains every one isomorphic to it.

(Po2) contains all splitting short exact sequences.

(P-3) The composite of two -monomorphsms is an -monomorphism if ths compomte ss

defined.

-3’) The composite oftwo -epimorphisms is an -epimorphism if it is defined.

(P-4) Ifc, are monomorphisms and Io is an -monomorphism, then c s an -monomorphism.

(P-4’) If/, are epimorphisms and fio/is an -epimorphism, then fi is an -epimorphism.

Short exact sequences of the form (1.1) from give the subgroup E xt(C,A) of the group of

extensions E xt(C,A). Throuout this paper we shall write Ext(C,A) instead of E xt(C,A)
DEFINITION. Let be a class of short exact sequences. The least proper class containing is

said to be generated by and denoted by <>.
Since the intersection ofany family ofproper classes is proper, we have evidently

<>
_

is a proper class}. (1.2)
The noUon of a generated proper class is a generalization of projectvely (mjectively),

coprojectively (coinjectively) generated, and other, proper classes (see StenstrOm[5], Alizade [6]). In
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this paper some properties of the class <8> are gven in terms of 8 and the structure of this class ts

investigated by means ofsome operations between subclasses.

2. GENERATED PROPER CLASSES.
DEFINITION. A module A is called -coprojective (-coinjective) if every short exact sequence

ending (beginning) at A belongs to .
The least proper class for which every module from the class of modules is coprojective

(coinjective) is denoted by k() (k()). Such classes are sasd to be coprojectively (coinjecuvely)

generated (see Alizade [7][6]).
PROPOSITION 2.1. Let t be a class ofmodules. For each P# take a short exact sequence

EP0 >Kp ----+F -----P ;0 (2.1)

wth some projective Fv. Denote E Pt by 8, Then k(t)

PROOF. Denote <8,> by t. Since each module PtP is k(t)--coprojective, every E from 8,
belongs to (t). t is the least proper class which contains all EP, therefore t_k(tP).

On the other hand, since E t, for any module A we can write the following exact sequences:

>Hom(F,A) ;Hom(K,A) Ext(P,A) Ext(Fo,A)

I! II u u

>Hom(Fp,A) Hom(K,A}Ext(P,A) E xt,(Fe,A) >...

E xtfFr,,A E xt (Fp,A) 0 Fp being a projective module. By 5-Lemma E xt(P,A) E xt (P,A)
Then P s an t-coprojective module. Since k() is the least proper class for which every P is

coprojective, we have k (tP) _. 1

The dual statement can be proved for coinjectively generated classes.
DEFINITION. Let t be a class of short exact sequences. A module A said to be t-projective

(-injective), if for every t-epimorphism (t-monomorphism) o" B---C

." Hom(A,B) >Hom(A,C) (’" Hom(C,A) ;Hom(B,A)) (2.3)

is an eptmorphism. The class of all t-projeetive (respectively, t-injective) modules is denoted by (t)
(resp. t()) (see [4], [5]).

A proper class is said to be projective, if for every module A there is an -epimorphism from an

t-projective module P onto A. An injective class is defined dually.

PROPOSITION 2.2. Let be a projective class and 8 be the class of all short exact sequences

0 >A >P >C )0 (2.4)

from t. P being an -projective module. Then <.
PROOF. The inclusion <=_ is obvious. On the other hand, let (1.1) be an arbitrary short

exact sequence from . Since is a projective class, there exists an -epimorphism ’/ P-+B with an

-projective P. By (P-3’) 13o’/is an -epimorphism At the same time 13o,/is an <>-epmorphism since
P is an -projective module. Therefore, 13 is an <>-epimorphism by (P-4’). Thus E<. l

The proposition dual to propostmn 2.2 can be proved for an injective class t
PROPOSITION 2.3. g(8) (<8>).
PROOF. Cc_<> by the definition of <, therefore n(8)_(<t,’>). On the other hand, the proper

class 7z-({K}) includes 8 for every Krt(g). Since < is the least proper class including &
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<8>_x-’({K}). Therefore, K is projective for every short exact sequence from <,% Then Kn(<8>)
Thus (8,)_(<8>)

PROPOSITION 2.4. t() t(<6>).
The proofs dual to that ofProposmon 2.3

3. SOME OPERATIONS BETWEEN PROPER CLASSES.
DEFINITION. The proper class tt+l =<tt/> is called the sum ofthe proper classes and 1

Let us denote the class of short exact sequences whose monomorphisms are ctol3, ot being an

-monomorphism and 13 being an l-monomorphism, by toL

Define the class . ofshort exact sequences by the formula

E xt,.(C,A) E xt,(C,A) + E xtz(C,A). (3 1)

We have the followang obvious facts:
1) t+. 1+t is a proper class;

2) ,1

3) ol

_
1+ and

In Theorem 3.1 we present the situation where ,1
_

ol.

In general tol and t,l need not be a proper class (see Corollary 4.1) But if to. (or ,1) is

proper then, clearly, tt+l o. (tt+l a,l) and we can study t-I by means of and 1 (as in [6]).
The following proposition can be derived from Theorem 2.1 of Kepka [8], but we give another

proofof this fact which relies on Thoeorem of Alizade [7].
PROPOSITION 3.1. If the class of modules tP is closed under submodules and extensions

(see [7], [8]), then k (tP) ’ o,
0, ’ being the class of all short exact sequences ending at modules

from t and ’0 being the class of all splitting short exact sequences.

PROOF. Take an arbitrary short exact sequence (1.1) from k(). Since is closed under

extenmons, by Theorem of Alizade [7] there exist PetP, E. Ext(P,A) and a homomorphism 3,:C---}P
such that E--3,’(E,). Since tP is closed under submodules, Im 7tP. Therefore 7 can be taken as an

eplmorphism. From the cohomology sequence for 0 >K C }P }0, K=Ker 7"

;Ext(P,A) " Ext(C,A) " Ext(K,A) (3.2)

we have EIm "= Ker/5". Then in the following commutative diagram with exact rows and columns

0 0

ft’(E): 0---+A B’ >K >0

E" 0 A,, >B,C >0 (3 3)

P P

0 0

fi’(E) 0 On the other hand, since 0 > B’ >B >P+0 C’ we have EC’ O,o

Conversely, since g’ c_<C’> and/_<C’ >, we have C’ o0_c<C’ >G_(tP). [

LEMMA 3.1. Let (1.1) be a short exact sequence, ?:D-B be an arbitrary homomorphism and
F=y-(A). Then the homomorphism 6:D/F--C, induced by % is a monomorphism.

PROOF. Iff(d+F)=0 then y(d)A. Therefore d?-(A)=F and d+F=F. 1
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LEMMA 3.2. If is a class of modules, closed under extensions and submodules (see [7], [8]),

then for k () and any proper class ,. E Xtto is a subfunctor of Ext R-mod x R-rood --> Ab,

R-rood being the category of left R-modules and Ab being the category ofabelian groups.

PROOF. Let E:0--A D >F-----0Extt.(F.A) and y:A--M be an arbitrary homo-

morphism Since Eo,, o=c p, being an -monomorphism and 13’ being an/.-monomorphism.
By Prop.3.1 or’ can be written as x’=o0, where 0 s a splitting monomorphism and P=D/Imot

Therefore 0ol3’=[3 s an -monomorphism. Thus 6=oto[3 and we have the following commutatsve

d,agram wth exact rows and columns:

0 0

0 o

0 01

E:0 A-- DF, [> O (3.4)

y.(E):0 M $ -T’--" F 0

1
0 0

The short exact sequence 0 >M ’ B’ C >0 belongs to I as an image of the short

exact sequence 0. >A--->B----->C >0 Then 3, is an ,-monomorphism.

The short exact sequence 0 > B’ =’ D’ >P >0 belongs to as an image of

0B >D ;P >0. Then oh is an -monomorphism. Therefore 5=hol31 is an ol-mo-

nomorphism and y.(E): 0 >M---E-+D >F >0 oA i.e., Ext.t(F,A) is a subfunctor with

respect to the second variable.

Now let us prove functomess with respect to the first variable. Let v:N-->F be an arbitrary

homomorphism Then taking C’--v-’(C) and B"=w’(B) we have the following commutative diagram

wth exact rows and columns:

0 0

0 0

(3 5)
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Z s a monomorphism by Lemma . 1. Since P s closed under submodules, P’=_lmxetv Therefore, by

(P-l) we have 0----B"----, D" >P’-----0 e k(P)=. Since Extt(C,A) is a contravanant

functor with respect to the first variable, 0----A >B" >C’ >0el. Thus

v’(E):0 >A- >D"- >N >0 o2. (3.6)

So E Xtoz s a subfunctor of Ext:R-mod R-rood --} Set.

To prove that Ext.(C,A) is a subgroup of Ext(C,A) for every C, A, let E, E_Ext.(C,A).

Since E,+E:--V(EE)Ac (see Mac Lane [2]), to prove that E+Eol, t s sufficient to show that

E,E oI Let E,:0 >A---+B,----->C ;0 and E:0----->A >B: ;C ;0

Then x=%.oct,, 13=13o13, where x,,[3 are I-monomorphisms and ,13: are -monomorphsms

Clearly, ct,13, is an 2-monomorphism and %@13 is an R-monomorphism. Therefore,

tx13=(%13)o(ttl, ) is an oL-monomorphism. So E,E oL.

One can easily show that E1 implies -Eol. Thus E xt. is a subfunetor of

Ext R-rood x R-rood ---> Ab.1
REMARK. Now to prove that ol is a proper class it remains only to show that the composite of

two o,-monomo’rphisms is an o2-monomorphism (see Nunke [9]). By means of ths fact we have

obtained the description of the smallest proper clasps with given classes of coprojcctive and omjeetive
modules as a "composite" of coinjectively and coprojectively generated classes, which will soon be
pubhshed

Since _oA and d_co2, Lemma 3.2 gives the following inclusion.
THEOREM 3.1. If the class P of modules is closed under extensions and submodules

(see [7], [81), then ,2_o2 for k (P) and for every proper class
4. SOME EXAMPLES l THE CATEGORY OF ABELIAN GROUPS.

Let 0 be the class of all splitting short exact sequences, be the class of all pure short exact
sequences and 9 be the class of all torsion splitting short exact sequences (see Fuchs ]). For a proper
class put

{E for some nZ (n0) nE}, (4 1)

(see Ahzade [6]).

Class 0 of all short quasi-splitting exact sequences was introduced and studied by Walker C.P.[10]
Classes and , were studied by Hart in [11], where these classes were denoted by

Clearly, +’(0- for every proper class .
THEOREM 4.1. + 0 "PROOF. Denote + 0 by . EveryE can be written as E=I.E (n=l), therefore E and

then (=: On-the other hand, $0_, therefore 30_. Thus

Conversely, let E: 0 >A---+B >C0. Then nE for some n;0. Let us denote
by n the endomorphism of multiplication by n on A. Then by Lemma 52.1 in Fuchs [1] nE s the lower
exact sequence in the following commutative diagram:

E 0 >A >B >C

nE 0-->A B’ =-C
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The endomorphsm n:AA can be represented in the natural way n=czoo, where o.A-,nA s

pimorphlsm and ct:nA-A is inclusion map
We have the following commutative diagrams with exact rows and columns:

0 0

A[n] A[n]

E0 A B .o >C----+0

E’ 0 >hA >B X 0

0 0

(43)

0 0

E’: O- >nA B, --2--> X -----+0

nE: 0 A >B’----+C ->0

A/nA A/nA

0 0

(44)

A/nA is a bounded and hence 0-coprojective group. Therefore the short exact sequence

0 >nA A >A/nA >0 belongs to 0 and since 0_?, it belongs to g,e., a s a

?-mono-morphism. Since nE_;,
monomor-phism. Hence, by (P-4), v is a ;?-monomorphism. Thus E’?.

A[n] Is a bounded and therefore 0-coinjective group. Hence the short exact sequence

0. >A[n]---->B >B, >0 belongs to ’o and since ,0_, it blongs to , e. y s a

-epimorphsm. Since E’, 5 is a ;-epimorphism. By (P-3’) 0=8oy is a -epimorphism. Therefore

E? and we have _:. I

DEFINITION. For a subgroup A of B let ={ bB: mbA for some mZ,(m0)}
LEMMA 4.1. Let B be the maximal divisible subgroup and T(B) be the torsion part ofa group B.

Then

]. B.+T(B)= B+ (4 5)

PROOF. The inclusion Bd+TCB)_B is obvious.

Let B=BdK, K<B and let b=a+k be any element from B (aeBd,keK). Then nbeBd for some

he0. Since Bd is divisible, nb--na, for some a, eBb. Therefore na+nk=nb--na,. By directness of the sum

BK, nk=0 and hence keT(B). So b=a+keB,+T(B)
Now we take B=Ext(C,A) for any groups C,A, then Bd=EXts(C,A) by Prop. 58.3 in Fuchs [1] and

T(B)=Ext (C,A) (see [101). Therefore by Lemma 4.1 we have
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E xt^(C,A) Ext(C,A)+ E xt^ (C,A) (4.6)

for each group C,A, i.e., 9=, This equahty together with Theorem 3.1 (note that3 k(#),

being the class of all torsion free groups (see [7]) gives us the following theorem.

THEOREM 4.2. *A0 oA +o:,. So every ,-monomorphism is a composmon of an

0-monomorpMsm and a monomorphism. 1

For the class $ the situation s worse.

LEMMA 4.2. There exists a reduced cotorsion group C, Uim’s subgroup of which s torsmn flee

and algebraically compact group

PROOF Let J be the group of p-adm numbers. The p-basic subgroup B=<b> of J, is somorphm

to the group Z of integers and Jp/B is a divisible group (see ch.20 and 32 in Fuchs [l]). Let us

construct an extension K of B such that the first UIm’s subgroup K of K is equal to B. Define K by

means ofgenerators

b, b b K=<b, b b > (4.7)

and relations

b,=b, 2b:=b, nb,=b, (4.8)

K/B is isomorphic to a direct sum of cyclic groups, hence (K/B)’ =0 and we have K’ c_B. On the

other hand, the inclusion B_K is obvious and thus K=B.
Let us complete the diagram

(4 9)

to a pushout diagram. Then we have the following commutative diagram with exact rows and columns:

0 0

0 B >Jp >Jp/B >0

0 K =’ D D/K >0 (4.10)

K/B D/Jp

0 0

Since ct s a monomorphism, or’ is also a monomorphism and Jp/BD/K, K/B=D/Jp (see Th 10.2 [1]).

Now let us prove that D=Jp. Since (D/Jp)--(K/B)=0 we have D c_Jp. On the other hand let

xJ and nZ (n,0) be arbitrary. Since Jp/B is divisible, there is x, Jp such that x-nxt B B=Kt,
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therefore there is an element kK such that x-nx,=nk. Then x=n(x,+k)nD Thus we have xD’
and D =J

Since D/Jp is isomorphic to a direct sum of finite cyclic groups, it can be embedded into a direct

product ofthese cyclic groups, i.e., into a reduced algebraically compact group M D/Jp M. By
Theorem 51.3

13": E xt(M,Jp) E xt(D/Jp,J) (4.11)

s an epmorphism. Therefore there is an extension C of D such that the following diagram with exact

rows and columns s commututive:

0 >JpD >D/J. >0

0 J >C M >0

(4.12)

Jp=DIcC’_ Since M is a reduced algebraically compact group, we have (C/Jp)=-M=0 by

Prop.54.2 [1]. Then C _Jp. Hence we have C’=Jp and C is a reduced group. By Prop. 39 4 [1] Jo s
an algebraically compact group. Since J and M are algebraically compact and hence cotorsion groups,

by ch 54(D) [1] C is a reduced eotorsion group.
LEMMA 4.3. If the Ulm’s subgroup A=C’ of a reduced group C is torsion free and different from

zero, then

A+T(C) ;e ,, (4 13)

T(C) being the torsion part of C.

PROOF. Take an element a n Aof the reduced group A. Since A= n C, there s bC such
0nZ

that nb=a. Obviously b ,. If bA+T(C), one can write b=a,+t with a, cA and tT(C). Then

a=nb=nat+nt and hence nt=a-na AcT(C). Since A is torsion free, nt=0 and we have a=na nA
But ths contradicts the assumption. Thus b

,\(A+T(C)). [
The following theorem demonstrates that for proper classes t and I the class t.l need not be

proper.

THEOREM 4.3. , ;e .
PROOF. According to Lemma 4.2 there is a reduced cotorsion group C, Ulm’s subgroup A=C of

which s reduced, torsion free and algebraically compact. By ch. 54(H) we have

Ext(Q/Z,C)=C (4 14)

By Theorem 53.3 [1]

On the other hand,

Ext(Q/Z,C) Pext(Q/Z,C) m C’ A. (4.15)

and

E xt^ (Q/Z,C) Text(Q/Z,C) T(C) (4 16)

Ext^(Q/Z,C) =/. (4 17)
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By Lemma 4 3 we have

Ext(QF/C)+Ext (Q/Z,C) Ext^(Q/Z,C)

Thus ,0;e;. 1

COROLLARY 4.1. The class *0 is not proper

PROOF. Since Ext(C,A) and E xt^ (C,A) are subgroups of E xt^(C,A) for any group C and A,

ewdently 4, 0 - ;- Since ;=+/ is the least proper class including and 0, if,, Were a proper

class we should have -*0 and hence ,=,. But this contradicts Theorem 4.3.
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