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ABSTRACT. The generation of proper classes of short exact sequences of modules by subclasses 1s
considered. The class generated by two proper classes is studied by means of some operations between
these classes These operations are investigated in details for classes of short quasi-splitting, torsion-
sphtting and pure exact sequences of abelian groups.
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1. INTRODUCTION
By module we mean a unitary left R-module, R being an associative ring with identity and by
group we mean a Z-module, i.e. an abelian group.
Let ® be a class of short exact sequences of modules. If a short exact sequence
E:0 > A—» B —£5C > 0 an

belongs to ®, o is said to be an #~-monomorphism and B an #-epimorphism. A short exact sequence E is

determined by each of the monomorphism o and epimorphism 8 uniquely up to isomorphism. In the
case of necessity, without loss of generality, we shall regard any monomorphism to be an inclusion
map [ stands for the end of the proof. We use the terminologies and notations of Fuchs [1] and
Mac Lane [2].

DEFINITION. The class ® is said to be proper, if it satisfies the following conditions (see
Buchsbaum [3], Mac Lane [2], Sklyarenko [4]):

(P-1) Along with any short exact sequence 2 contains every one isomorphic to it.

(P-2) ® contains all splitting short exact sequences.

(P-3) The composite of two #-monomorphisms is an #-monomorphism if this composite 1s
defined.

(P-3") The composite of two #-epimorphisms is an £-epimorphism if it is defined.

(P-4) If o, are monomorphisms and Boa. is an #-monomorphism, then a 1s an £~-monomorphism.

(P-4") If'y, 6 are epimorphisms and 8oy is an R-epimorphism, then § is an #-epimorphism.

Short exact sequences of the form (1.1) from ® give the subgroup Ext,(C,A) of the group of
extensions E xt (C,A). Throughout this paper we shall write Ext(C,A) instead of Ext}y(C,A)

DEFINITION. Let € be a class of short exact sequences. The least proper class containing ¢ is
said to be generated by € and denoted by <€>.

Since the intersection of any family of proper classes is proper, we have evidently

<E>=n{R:Eck;R isaproper class}. (1.2)

The notion of a generated proper class is a generalization of projectively (injectively),

coprojectively (coinjectively) generated, and other, proper classes (see Stenstrém[5], Alizade [6]). In
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this paper some properties of the class <&> are given in terms of £ and the structure of this class 1s

investigated by means of some operations between subclasses.

2. GENERATED PROPER CLASSES.
DEFINITION. A module A is called -coprojective (R-coinjective) if every short exact sequence

ending (beginning) at A belongs to &.
The least proper class for which every module from the class of modules 4 is coprojective

(coinjective) is denoted by ;(A) (k(4)). Such classes are said to be coprojectively (coinjectively)
generated (see Alizade [7][6]).
PROPOSITION 2.1. Let # be a class of modules. For each Pef take a short exact sequence
Ef:0——K, —F, —>P—0 @

with some projective F,. Denote { E¥ : Pef } by €. Then k(P) = <€'>.

PROOF. Denote <€/ > by £ Since each module Pe is k (P)-coprojective, every E° from €’
belongs to I(P). ® is the least proper class which contains all EF, therefore wgi(w).

On the other hand, since E” €, for any module A we can write the following exact sequences:

... —Hom(F,,A)—>Hom(K,,A)}— Ext(P,A) —> Ext(F,,A)—>
[ [l U V) (2.2)

...—Hom(F,,A)——Hom(K,;,A}— Ext,(P,A)}—— Ext,(F,,A)}—>...

Ext,(F,,A)=Ext(F,,A)=0 , F, being a projective module. By 5-Lemma Ext,(P,A)=Ext(P,A)
Then P 1s an ®-coprojective module. Since k() is the least proper class for which every Pef is
coprojective, we have k(%) cr. [§

The dual statement can be proved for coinjectively generated classes.

DEFINITION. Let ® be a class of short exact sequences. A module A said to be &-projective
(R-injective), if for every ®-epimorphism (£-monomorphism) ¢ : B—»C

c.:Hom(A,B)y——Hom(A,C) (¢": Hom(C,Ay——>Hom(B,A)) 2.3)

is an epimorphism. The class of all ®-projective (respectively, R-injective) modules is denoted by (&)
(resp. W(®)) (see [4], [SD).

A proper class ® is said to be projective, if for every module A there is an #-epimorphism from an
R-projective module P onto A. An injective class is defined dually.

PROPOSITION 2.2. Let ® be a projective class and € be the class of all short exact sequences

0—>A——P—C—0 (2.4)

from ®, P being an ®-projective module. Then &= <€>.

PROOF. The inclusion <€>C® is obvious. On the other hand, let (1.1) be an arbitrary short
exact sequence from £. Since ® is a projective class, there exists an ®-epimorphism y : P-»B with an
R-projective P. By (P-3') Boy is an #-epimorphism At the same time Boy is an <¢>-epimorphism since
P is an @-projective module. Therefore, B is an <€>-epimorphism by (P-4). Thus Ec<&>. |}

The proposition dual to proposition 2.2 can be proved for an injective class 2

PROPOSITION 2.3. 7(€) = n(<&>).

PROOF. &c<&> by the definition of <€>, therefore m(£)on(<€>). On the other hand, the proper
class ©'({K}) includes € for every Ken(f). Since <&> is the least proper class including &,
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<t>cn'({K}). Therefore, K is projective for every short exact sequence from <> Then Ken(<£>)
Thus n(f)cn(<t>) B
PROPOSITION 2.4. (£) = u(<&>).
The proof'is dual to that of Proposition 2.3
3. SOME OPERATIONS BETWEEN PROPER CLASSES.
DEFINITION. The proper class @+ =<®us> is called the sum of the proper classes £ and £
Let us denote the class of short exact sequences whose monomorphisms are oo, o being an
#-monomorphism and B being an -monomorphism, by ®o..
Define the class ®+2 of short exact sequences by the formula

Ext,.,(C,A)=Ext,(C,A)+ Ext,(CA). @31

We have the following obvious facts:
1) ®+1=1+R 1s a proper class,
2) Rxl=LxR;
3) ®o2 c /+R and R+l RHL

In Theorem 3.1 we present the situation where R+ C Rol.

In general R0 and =L need not be a proper class (see Corollary 4.1) But if Rof (or @+2) is
proper then, clearly, #+2 = @02 (®+ = ®£) and we can study #+2 by means of ® and £ (as in [6]).

The following proposition can be derived from Theorem 2.1 of Kepka [8], but we give another
proof of this fact which relies on Thoeorem 1 of Alizade [7].

PROPOSITION 3.1. If the class of modules # is closed under submodules and extensions
(see [7]. [8]). then k(P)=¢’ od,, & being the class of all short exact sequences ending at modules

from # and 4, being the class of all splitting short exact sequences.

PROOF. Take an arbitrary short exact sequence (1.1) from ;(IP)‘ Since £ is closed under
extensions, by Theorem 1 of Alizade [7] there exist Pef, E, eExt(P,A) and a homomorphism y:C—P
such that E=y*(E,). Since ¢ is closed under submodules, Im ye® . Therefore y can be taken as an

epimorphism. From the cohomology sequence for 0——K -2 3C—5P——0, K=Kery'

...—>Ext(P,A)—> Ext(C,A)}—"— Ext(K,A}— ... (3.2)
we have EcIm y°= Ker &°. Then in the following commutative diagram with exact rows and columns
0 0

bl

8°(E): 0—>A——>B—5K—0

ls

E 0—A—B—5C——0 33)
ool
P P
L
0 0

8°(E)e 4, On the other hand, since 0——>B'——>B—P—50¢¢’ we have Ect’o '8

Conversely, since £* c<¢’> and 4,c<€’>, we have o<t >ck(®). B

LEMMA 3.1. Let (1.1) be a short exact sequence, y:D—B be an arbitrary homomorphism and
F=y'(A). Then the homomorphism 5:D/F—C, induced by v, is a monomorphism.

PROOF. If §(d+F)=0 then y(d)eA. Therefore dey'(A)=F and d+F=F. |}
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LEMMA 3.2. If P is a class of modules, closed under extensions and submodules (see [7], [8]),
then for ® - k(#) and any proper class £, Ext,, isa subfunctor of Ext: R-mod x R-mod — Ab,
R-mod being the category of left R-modules and Ab being the category of abelian groups.

PROOF. Let E:0——>A—2>D——F——0cExt,_,(F,A) and y:A—M be an arbitrary homo-
morphism  Since E€®o2, 3=at'oB', o being an #-monomorphism and B' being an Z-monomorphism.
By Prop.3.1 o can be written as a'=008, where 0 1s a splitting monomorphism and P=D/Imaef
Therefore 8of'=B 1s an {-monomorphism. Thus §=c0of and we have the following commutative

diagram with exact rows and columns:

E:o—»A-‘-»D-——»F—lj»o 3.4

The short exact sequence 0——>M—2—B'——C——0 belongs to £ as an image of the short
exact sequence 0——>A—P2 3B——>C——0 Then B, is an 2-monomorphism.

The short exact sequence 0——> B'—>—» D'——P——0 belongs to £ as an image of
0——>B——>D——P——0. Then q, is an .-monomorphism. Therefore §,=a.,o, is an £ol-mo-
nomorphism and v,.(E): 0—M—3D'—3F——0€ ® ie., Ext,,,(F,A) is a subfunctor with
respect to the second variable.

Now let us prove functorness with respect to the first variable. Let v:N—F be an arbitrary
homomorphism Then taking C'=v-/(C) and B"=p-'(B) we have the following commutative diagram

with exact rows and columns:

‘% 0 359)
N
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% 1s a monomorphism by Lemma 3.1. Since # 1s closed under submodules, P'=Imxe® Therefore, by
(P-1) we have 0——B"—— D"——P'——0 € k(P)=R. Since Ext,(C,A) is a contravanant
functor with respect to the first variable, 0——>A——>B"——>C'——>0el. Thus

V(E).0—>A—>D"—>N——0 ol (3.6)
So Ext,,, 1s a subfunctor of Ext:R-mod x R-mod — Set.

To prove that Ext, ,(C,A) is a subgroup of Ext(C,A) for every C, A, let E,, E,eExt, ,(C.A).
Since E,+E,=V ,(E ®E,)A. (see Mac Lane [2]), to prove that E,+E,e®02, 1t 1s sufficient to show that
E®E,ef! Let E:0—>A—2»B—>C—>0 and E0—A—f5B,——>C—0
Then a=oeca,, PB=B,oB,, where a,,B, are 2-monomorphisms and a,,B, are ®-monomorphisms

Clearly, o,®B, is an f-monomorphism and o, @, is an ®-monomorphism. Therefore,
a®P=(a,®P,)o(a, P, ) is an Kol-monomorphism. So E,BE, eRol.
One can easily show that Ec®o! implies -E€®02. Thus Ext,,, is a subfunctor of

Ext : R-mod x R-mod — Ab J}
REMARK. Now to prove that o is a proper class it remains only to show that the composite of

two Rof-monomorphisms is an Rof~-monomorphism (see Nunke [9]). By means of this fact we have
obtained the description of the smallest proper class with given classes of coprojective and conjective
modules as a "composite" of coinjectively and coprojectively generated classes, which will soon be
published.

Since ®—fo! and lc@ol, Lemma 3.2 gives the following inclusion.

THEOREM 3.1. If the class # of modules is closed under extensions and submodules
(see [7]. [8]), then @x2ctol for & = k(P) and for every proper class 2. |}
4. SOME EXAMPLES IN THE CATEGORY OF ABELIAN GROUPS.

Let 4, be the class of all splitting short exact sequences, 4 be the class of all pure short exact
sequences and J be the class of all torsion splitting short exact sequences (see Fuchs [1]). For a proper
class & put

li’= {E : for some neZ (n=0) nEc®}, 1)
(see Alizade [6]).
Class AA,, of all short quasi-splitting exact sequences was introduced and studied by Walker C.P[10]
Classes 3 and 5 were studied by Hart in [11], where these classes were denoted by A and C.

Clearly, #+5,c® for every proper class &.

A

THEOREM 4.1. 2+ = .
PROOF. Denote # + 30 by J. Every Ee® can be written as E=1-E (n=1), therefore EE& and

then 22® On-the other hand, 3,c®, therefore §,c®. Thus R+5, ;33,

Conversely, let E: 0-——)A—>B—-—)C———)Oea§4 Then nEeR for some n#0. Let us denote

by n the endomorphism of multiplication by n on A. Then by Lemma 52.1 in Fuchs [1] nE 1s the lower
exact sequence in the following commutative diagram:

E: 0—>A—>B——C——0e®

ln ! I 42)

nE:0——A—> B——C——0chR
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The endomorphism n:A—A can be represented in the natural way n=coc, where 6.A—nA 1s
epimorphism and a:nA—A is inclusion map
We have the following commutative diagrams with exact rows and columns:

0 0

} !

Aln] Aln]

(N )
E:0—> A »yB—25C—0¢cR 43)
E 0 ‘nl ">Bl, 2 3X—0

} |

0 0

0 0

} l

E: 0—>nA——>B, —2>X—0

I 1

nE: 0 > A 5B —>C——0 € 44
b
A/mA A/nA
b
0 0

A/nA is a bounded and hence .bAo -coprojective group. Therefore the short exact sequence

0——nA—>A——>A/NnA——0 belongs to b:, and since 4,CJ, it belongs to J, 1e,a 15 a
J-mono-morphism. Since nEc®ZJ, p is a J-monomorphism. Therefore, by (P-3), pea=Bov 1s a J-
monomor-phism. Hence, by (P-4), v is a J-monomorphism. Thus E'eJ.

Aln} 1s a bounded and therefore 4,-coinjective group. Hence the short exact sequence

0 A[n] >B »B, >0 belongs to AA,, and since L:,gﬂ, it belongs to J, i e y1s a
J-epimorphism. Since E'eJ, & is a J-epimorphism. By (P-3') 6=8cy is a J-epimorphism. Therefore

EeJ and we have RcJ. B

DEFINITION. For a subgroup A of B let ;\={ beB: mbeA for some meZ,(m=0)}
LEMMA 4.1. Let B, be the maximal divisible subgroup and T(B) be the torsion part of a group B.
Then

A A

B, =B, +T(B) = B;+0 45
PROOF. The inclusion B4+T(B)cB, is obvious.

Let B=B &K, K<B and let b=a+k be any element from BAd (aeB,keK). Then nbeB, for some

n=0. Since B, 1s divisible, nb=na, for some a,eB,. Therefore na+nk=nb=na,. By directness of the sum
B,®K, nk=0 and hence ke T(B). So b=a+keB,+T(B) [
Now we take B=Ext(C,A) for any groups C,A, then B;=Ext,(C,A) by Prop. 58.3 in Fuchs [1] and

T(B)=Ext,.(C,A) (see [10]). Therefore by Lemma 4.1 we have
&



GENERATION OF PROPER CLASSES OF SHORT EXACT SEQUENCES 471
Ext,(C,A)= Ext,(C,A)+ Ext.(C,A) (4.6)
s Y

for each group CA, ie., 3=ﬂ*£o. This equality together with Theorem 3.1 (note that 5= k(P).
P being the class of all torsion free groups (see [7]) gives us the following theorem.

THEOREM 4.2. 5+ £o = .BobAo = ﬂ+.sA° =j9. So every S-monomorphism is a composition of an

4,-monomorphism and a 8-monomorphism. [l
For the class J the situation 1s worse.
LEMMA 4.2. There exists a reduced cotorsion group C, Ulm's subgroup of which is torsion free
and algebraically compact group
PROOF Let J be the group of p-adic numbers. The p-basic subgroup B=<b> of J, is isomorphic

to the group Z of integers and J /B is a divisible group (see ch.20 and 32 in Fuchs [1]). Let us

construct an extension K of B such that the first Ulm's subgroup K' of K is equal to B. Define K by
means of generators

b, b, .. ,b,, ..:K=<b, b, ..,b_,..> @7

and relations
b,=b, 2b,<b, . ,nb,=b, .. “438)
K/B is isomorphic to a direct sum of cyclic groups, hence (K/B)' =0 and we have K'cB. On the

other hand, the inclusion BCK' is obvious and thus K'=B.
Let us complete the diagram

l 49)

to a pushout diagram. Then we have the following commutative diagram with exact rows and columns:

b
0—>K—%5D—DK—0 (4.10)
oo
KB DI
oo
0 0

Since o 1s a monomorphism, o' is also a monomorphism and J /B=D/K, K/B=D/J (see Th 10.2 [1]).
Now let us prove that D'=J . Since (D/J,)'=(K/B)'=0 we have D'cJ,. On the other hand let
xeJ, and n€Z (n=0) be arbitrary. Since J /B is divisible, there is x, €], such that x-nx,€B B=K',
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therefore there is an element k€K such that x-nx,=nk. Then x=n(x,+k)enD Thus we have xeD'
and D'=J

Since D/J is isomorphic to a direct sum of finite cyclic groups, it can be embedded into a direct
product of these cyclic groups, i.e., into a reduced algebraically compact group M- D/J r——)" M. By
Theorem 51.3 [1]

B :ExtM,J )——Ext(D/J.J ) @.11)
1s an epimorphism. Therefore there is an extension C of D such that the following diagram with exact
rows and columns 1s commututive:

0—>J,—D——D/J —0
T s (4.12)

0—>J, C— M —0

J,=D'cC'. Since M is a reduced algebraically compact group, we have (C/J))'=M'=0 by
Prop.54.2 [1]. Then C';JP. Hence we have C'=Jp and C is a reduced group. By Prop. 394 [1] J, 1s

an algebraically compact group. Since J, and M are algebraically compact and hence cotorsion groups,
by ch 54(D) [1] C is a reduced cotorsion group. |} '
LEMMA 4.3. If the Ulm's subgroup A=C' of a reduced group C is torsion free and different from
zero, then
A+T(C) A, (413)
T(C) being the torsion part of C.
PROOF. Take an element a & n A of the reduced group A. Since A= o’nan, there 1s beC such

that nb=a. Obviously b e;\. If beA+T(C), one can write b=a,+t with a,€A and teT(C). Then
a=nb=na,+nt and hence nt=a-na, e ANT(C). Since A is torsion free, nt=0 and we have a=na, énA
But this contradicts the assumption. Thus b e;\ VA+T(C)). B

The following theorem demonstrates that for proper classes ® and £ the class ®#+£ need not be

proper.

THEOREM 4.3. bxd 4

PROOF. According to Lemma 4.2 there is a reduced cotorsion group C, Ulm's subgroup A=C' of
which 1s reduced, torsion free and algebraically compact. By ch. 54(H) [1] we have

Ext(Q/Z,C)=C (4 14)
By Theorem 53.3 [1]
Ext,(QZC) =Pext(Q/ZC) = C' = A. (4.15)
On the other hand,
Ext&(Q/Z,C) = Text(Q/Z,C) = T(C) (4 16)
and

Ext,(QZC) = A “417)
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By Lemma 4 3 we have
Ext,(QZO)+Ext, (QZC) #Ext.(QZC) (4.18)
I
Thus A*,;o:b. |
COROLLARY 4.1. The class 4+, is not proper

PROOF. Since Ext,(C,A) and Ext,(C,A) are subgroups of E xt,(C,A) for any group Cand A,
Iy I3

evidently +4,C 4. Since $=4+3, is the least proper class including 4 and 3, if 3x 4, Were a proper

class we should have ng*b:, and hence Iwa,,=3>. But this contradicts Theorem 4.3. [}l
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