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1. INTRODUCTION
The best approximation problem in normed linear spaces was considered by several authors including

Burbu [1], Singer [2]. Also in locally convex spaces some results were obtained by Singer [3]. The

principle objective of this paper is to generalize the idea of best approximation problem in locally convex

linear topological space setting and to find the best control.

2. STATEMENT OF TIIE PROBLEM
Let E be a convex subset of a locally convex linear topological space X and X* be the conjugate

space of all continuous linear functionals defined on X.

Consider the problem

x sup [(m-x,f) +IE(m)
fX"

where x is the given element ofX and IE is the indicator function such that

[ 0 if m E E
_r(m) +c if mE

To solve this problem let us consider the following definition and theorems

DEFINITION 1. An element E E is called a best approximation to z X from E if

sup I( z, f)l -< sup {1( m, f)l, for all m }.
fx" fx"

(2 1)

By Remark 1.1 ([ ], p 174) it can be shown that is the best approximation to x from E, if and only if

there exists x[ X" subject to

f(t) +f’(z3) <_ (z3,m) forall rn E (2.2)
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where

sup ](m z, 1)1= m e X./(m)
x.

TIOREM 1. An element 6 E is the best approximation to x 6 X from elements of the convex
set E if and only ifthere exists x 6 X* such that

(i) sup 1(5,)1 sup I(/- x,
zeXcX’" rex"

(ii) (x,m- x) > sup I(l- z,f)l2, forall m 6 E

where X** is the conjugate space ofX*.

PROOF. Now we have

1
sup I(m-z,f)lg;m 6 X}f" (x) sup (x0, rn)- /x-

(x;,x) +sup (x;,m)- - sup I(m,f)12;m e X
/ex.

(x0,x) + sup I(;,)1
zXcX’"

and the optimality condition (2.2) becomes

1 1
sup I(/- x,f)12 + sup
:x- x=x"

l(, f)l (:r, m ), Vm E. (2.3)

In particular, for m l, we obtain

sup i(e- ,/)1-
fX"

2

sup I(zS, z)l o
xXcX*"

which implies condition (i). Consequently from inequality (2.3) condition (ii) follows, as claimed.

Conversely, it is clear that condition (i) and (ii) imply that is a best approximation, because we have

sup I(/- x, f)l (z, m z)

< sup I(xS,z)l. sup I(m--z,f)
zXcX’* fX"

< sup J(l-x,f)l" sup J(m-x,f)J,Vm 6 E
yex. /ex.

and so, we must have (2.1).
COROLLARY 1. If 6 E is a best approximation of x 6 X by elements ofthe convex set E, then

the following minimax relation

sup I(x l, f)i rain max (x’, m x)
/6X" mE sup

zXcX**

max rain (z" m- z).
sup I(’,x)l--x

xEXcX**

(2.4)

holds, where x" 6 X*.

PROOF. This follows clearly if we use the relationship between the solutions to the problem (P)
and the existence of the saddle points ([1]). To this end it suffices to remark that the point x0, the
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existence of which is ensured by Theorem 1, is just the solution of the dual problem. This completes the

proof.

REMARK 1. Let d sup (l(z rn, f)l; m E E} be distance between the point z and the convex
fX"

set E.
Then we obtain a weak minimax relation by replacing "rain" by "inf’ because in such a ease only the

dual problem has solutions.

Next we shall notice several special cases in which conditions (i) and (ii) of Theorem have a

simplified form. Namely, if E is a convex cone with vertex in the origin, then condition (ii) is equivalent
to the following pair of conditions

(ii’) (z,m) < O, Vm . E, i.e. z E
(ii") (z, z) sup Iz e; fl

rex"
where E is the polar set ofK ([4], p. 136).

Here is the argument. From condition (ii) replacing z by z, we obtain

(z,z nrn) > sup I(z I, f)l2, Vrn E, Vn N
rex.

because E is a cone. Therefore we cannot have (z, rn) > 0 for some element m E E, that is (ii’) holds.
Moreover, from properties (ii) and (ii’) it follows that

sup I( t, f)! _< (z;, z t)
leX"

_< sup I(z,z)l sup
zeXcX’" feX"

sup I(z , I)1,
/’eX"

hence (z, z l) sup I(/- z, f)l2. Thus we have
reX"

o >_ (;,t) (z;,z) (;, t) (z, ) sup I(z t,f)l
rex"

and (from (ii) if rn 0)

(z,z) _> sup I(z- t,/)l
reX"

which implies property (ii’). The reciprocal is obvious.

When E is a linear space, condition (ii’) is equivalent to

(z, m)= 0, Vm E

because in this case E E.
It should be mentioned that the best approximation belongs to

E f"l {z .X" sup <_ d}
and it exists if and only if there exist separating hyperplanes which meet E. Moreover, the set of all best

approximations is convex and coincides with the intersection of the set with any separating hyperplanes.

When this intersection is non-empty the separating hyperplane is a supporting hyperplane and is given by

the equation

(z,m-z)=sup I(z-l, 1)l2, mEX.
IX"



90 H K. SAMANTA

Now, let us study the existence ofthe best approximation. Let

We easily see that

where

d inf ( sup [(m z’ f)[2
[ fx.

rneE reX" meEo(z;d+) [ reX"
(2.6)

/x"

THEOREM 2. A proper convex function f" X oo, + oo] is a lower-semicontinuous on X
ifand only if it is lower-semicontinuous with respect to the weak topology on z.

PROOF. We have already seen in Proposition 2.5 ([1], p. 12) that a convex subset of a locally
convex linear topological space is (strongly) closed if and only if it is closed in the corresponding weak
topology on X. In particular we may infer that epi f is (strongly) closed if it is weakly closed. This

establishes the theorem.

THEOREM 3. If the convex set E is such that there exists an > 0 for which the set

E N S(z; d + ) is weakly compact, then z has a best approximation in E.
PROOF. According to relation (2.6) it is sufficient to recall that a lower-semicontinuous funon

on a compact set attains its infimum In our case, the function is obviously weakly lower-semicontinuous

(see Theorem 2) on the weakly compact set E C S(m, d + ).
COROLLARY 2. In a semireflexive loc,ally convex linear topological space every element

possesses at least one best approximation with respect to every closed convex set.

PROOF. The set E C S(m; d + 1) is convex closed and bounded and hence it is wealdy compact
by virtue ofthe Alaoglu Theorem ([5], p. 15).

COROLLARY 3. In a locally convex linear topological space every element possesses at least one

best approximation with respect to every closed, convex and finite dimensional set.

PROOF. In a finite dimensional space the bounded closed convex sets are compact and hence

weakly compact.

DEFINITION 2. Let X, Y be locally linear topological spaces of the same nature. A linear

operator T" X -, Y is continuous if and only if it is bounded. In other words there exists K > 0 such

that

sup I(Tt, m’)l < Ksup I(t,r)l, Vt X.
rn" 6Y" l’X"

The set L(X, Y) of all linear continuous operators defined on X with values in Y becomes a locally

convex linear topological space by

sup .(T,f), sup{ sup ,(Tl, m’)l;sup ,(l,l’),< 1}feL" X,Y) m" (:Y" l"X"

=inf(K;sup [(Tt, m’)[<Ksup[(l,l*)[, VleX}. (2.7a)
I, m’Y" l’eX"

If Y R, we find that X* L(X, R), called the dual of X, is locally convex linear topological space

defined by
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sup [(l*, l)[ sup{ ll" (l); sup }. (2.7b)
lXcX., l’X"

IfX is real locally convex linear topological space, then

sup I(z’,Z)l-- supZ’(z);sup I(Z,Z’)l _<
IXcX’" t, I’X"

THEOREM 4. Let f0 be a continuous linear functional on a linear subspace A of a locally convex
linear topological space X. Then, there exists a continuous linear functional f on the whole of X, i.e.,

f X*, such that

(i) f/A fo
(ii) sup I(f,t)l sup I(f0,

IXcX’" IXcX"

PROOF. Since f0 is continuous on A, by relation (2.8) we have

fo(m) < sup I(f0,Z)l sup I(m,t’)l, Vrn A.
IXcX" I’X"

By the Hahn-Banach Theorem ([ ], Theorem 1.10, p. 17) for f0 and for the convex function

p(x) sup I(f0,/)l sup
IXcX’" l’X"

A specialization of this theorem yields a whole class of existence results. In this context we shall

present a general and classical theorem concerning the existence of continuous linear funetionals with

important consequence in the duality theory oflocally convex linear topological spaces.
TItEOREM 5. Let m be a non negative number and let h B --, R be a given real ftmetion, where

B is a non-empty set of the locally convex linear topological space X. Then, h has a continuous linear

extension f on all ofX such that sup ](f,/)l < rn if and only ifthe following condition holds:
IXcX"

EA’h(a) _< rn sup Aia/, A,a,l" Vn N, Ai R, a B. (2.9)
,=1 lX* 1=1 1=1

PROOF. From relation (2.7a) and (2.7b) it is clear that condition (2.9) is necessary. To prove the

sufficiency we consider A span B and we define f0 on A by

fo(m)=EA,h(at), if m= A,aaA, oB.
t=l :=1

First, using condition (2.9) we observe that f0 is well defined on A. Moreover from condition (2.9) the

con-

tinuity of f0 on A follows and sup I(fo, l)l < m. Thus any extension given under Theorem 4 has all
lXcX..

the required properties.

THEOREM 6. For any linear subspace A of a locally convex linear topological space X and X
there exists f X* with the following properties

i) //A 0

ii) f(l) inf sup I(/- m, l*)12 d(l, A)
meA (. I’eX"

iii) sup I(f,Z)I- inf sup I(z m,l’)l d(l,A)
IeXcX’" mA I,l*X"

PROOF. We take B=AU{I} and h B---,R defined by h(m) O, rn E A, and h(l) d2(l,A).
We observe that for any A # 0 we have
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which is just inequality (2.9) The desired result then follows by applying Theorem 5 Indeed, we have

properties (i) and (ii) and sup [(f,l)l < d(l,A). Since m d(l,A). On the other hand, if we
leXcX’"

consider a sequence {m} C A such that sup[(/+ m,,/*)[ d(l,A) we obtain
PeA

sup I(f,l)! >- f Ii,,,Z’)l sup I(/+rn, /’)1lexcx" sup
\l’X" l’eX"

d2(l,A)
d(l,A)

sup I( + m,,/’)1
l’X"

which implies sup I(f, l)l >_ d(1, A). Hence property (iii) also holds.
IXcX’"

COROLLARY 4. In a locally convex linear topological space X for every E X there exists a

continuous linear functional f E X" such that

(i) f(1) sup

(ii) sup I(f,t)l--
IXcX’" l’eX

Moreover, if # 0, there exists g e X" such that

(i’) z() sup
I’EX"

(ii’) sup
lEXcX’"

PROOF. By Theorem 6, d(l,A) sup I(,l*)l where A (0). Then the corollary completes the
l’X"

proof.
DEFINITION 3. The space X is strictly convex if every point ofthe polar set

{ X sup l(l, f)l l

is an extreme point.
THEOREM 7. A locally convex linear topological space X is strictly convex if and only if the

following equivalent properties hold:

(i) if sup I(z + y, f)l sup I(z, f)l + sup I(Y, f)l and z # 0 there is > 0 such that y
fx" fx" fx.

(ii) if sup [(z,f)[ sup [(y,f)[ 1 and z - V, then sup [(Az + (1-A)v,f)[ < I for all ) ]0,1[,
fEx" rex- fex-

(iii) if sup [(x, f)[ sup [(y, f)[ 1 and x y, then sup [((x + y), f) < 1;
rex" rex" rex"

(iv) the function z sup ](z, f)I, z X, is strictly convex.
feX"

PROOF. Let X be strictly convex and let z,y X\{O} be such that

sup I(z / y,/)t sup I(x, f)l + sup I(x, f)l-
rex" reX" rex"

By Corollary 4 for every x E X, there exists a
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continuous linear functional z" E X* such that (x + y,x*) sup ](x + y,z’)l
EX

Since

(z,z*) < sup I(z, f)l, (Y, z) < sup I(Y, f)l
rex" rex"

we must have (x,x’) sup I(x, f)l and (y, x’) sup I(Y, f)l, i.e.,
fx. rex"

sup I(x, f)l’z* sup I(Y, f)l
\rex" rex.

=1.

Because X is strictly convex it follows that

sup I(, f)l
rex"

hence property (i) holds with

sup I(/, f)l’
fX

sup I(, f)l
rex"
sup I(z, f)l"
leX"

sup I(z’,)l .
zXX"

To prove that (i) (ii) we assume by contradiction that there exists z such that
sup I(z, f)i sup I(u, f)l and sup I(,Xz + ( ,X)U, f)l 1, where ,X ]0, [. Therefore we have
fX fX" fX

sup I(Xz + (1 X)F, f)l sup I(,Xa:, f)l + sup I((1 X), f){.
fX" f.X" I.X

According to property (i) there exists t > 0 such that,kz t(1 A)/. Since sup I(z, f)l sup I(Y, f)!
fx" fx"

we obtain ,k- t(1- ) and so z---- which is a contradiction. The implications (ii)--, (iii) and

(iv) (ii) are obvious.

Now we assume that X is not strictly convex Therefore there exist z E X and zl, z2 X with

sup [(z,z)[ 1, sup [(zl,f)[ sup [(z2, f)l 1, zx a:9_ such that (xl,z0) (z2,x) 1,
zXcX’" fX" rEX"
hence ( (Zl + z2), z) 1. Thus

I( )1sup (Zl + z2), f sup (Zl +
fX" " supl(z’,z)l=l

zF.XcX**

contradicting property (iii). Hence property (iii) implies the strict onvxty of X. Now, from the

equality

,sup I(z, f)l / (1 -/) sup I(,f)l )sup I(z, f)l / (1 A) sup I(, f)l
fx" fx" fx" fx"

4- A(1 A) sup I(z,/)l- sup J(/, f)l
\fEx" fx.

it follows that
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Isup l(Az + (1 A),/)l _< A sup l(z, f)l + (I A)sup l(,
fX" fX" fX"

< Asup [(z, f)[2 + (1 A)sup [(F, f)[2
fx" fx"

for 1 , X th sup l(z, f)l sup (, f) d A ]0,1[. If sup (, f) sup I(N, f) we ob
fx. rex. fx. fx.

the gfi conve ofthe hnion z sup ](z,f)l, z X, from (ii). Thus the impfifion (fi) (iv)
fx.

is establish d the proofis compile.

EOM 8. If X is locly convex topoloc space wch is grimy conve then ch

element z X possesses at most one best appromafion th resp to a convex s E C X.
PROOF. se by contradion that there est two distin best approtions/,/

Sincee set ofbe approtions is convex, it follows that (l + l) is so a best appromation.

i sup I(m z, f)l, weHifd have
mELfex.
0 d sup I(m l, f)[ sup l(m l,

fex. fx.

I( 1
=sup - (+l),]

Iex"

where X" is the eenjugate spa ofXd ereby

In ewfthe cnve(Theore 7) we have

>sup (-l)+ (-l),I sup - (+
fX"

wch is a contradion. Ts comples the proof.
2. Ts prope is caefisfic of the stfily convex spaces: if, in a lowly convex

line topoloc space X,e element possses at most a best approbation th respt to eve
convex t (it isou fore seents), then X is fictly convex.

Ind,, if we asse tt X is not stripy nveg then ere egs z, X,z , th

up ]m,f)l up I,f)l P (m),f) x- Fuaheore, sup I0-),f)l x, [o,x].
fx. fx. fx. fx.

Hence the orion h at the be approtion th resp to e clo convex set [z, ] ev elemt

ofts set, d ts clely contradicts the uqueness.
From Corofi 2 d Theorem 3 it follows that in a serefleve strictly loy conv

topoloc space, for ev closed convex t g we c define the nction PX X by Pgz l,

where is the best approbation ofX by elemts of E. Ts nction is ed the projtion non
ofthe space X into E. We note that Pgz g for eve z X.

DEON 4. L us considere foHog generfy offion probls

where X, Y e locy convex line topoloc spaces d F X x Y R. Let us denote by

d H {(, a) Y R; there efigs X such that F(,)
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THEOREM 9. Let X, Y are locally convex linear topological spaces and F" X x Y --, ]-oo, +oo]
be a positively homogeneous and lower-semicontinuous function satisfying the following coercivity
condition

F@, O) > 0 for any a: e XI{O}.

Then, if epi F is locally compact, every problem P has an optimal solution whenever its value is
finite.

PROOF. It is easy to observe that

H Projy(epi F).

By hypothesis epi h is a closed cone and so (epi F)o epi F. Therefore, it is sufficient to use Corollary
1.13 ([1], p. 28) for T Projra and A epiF, taking into account that the separation condition
(1.42) ofCorollary 1.13 ([1], p. 28) may be written as condition (2.10).

TBOREM 10. If E is a closed locally compact convex set of a strictly convex locally convex
linear topological space X, then the projection function is continuous on X.

PROOF. If a:, -, a:, for every > 0, then there exists n0(e) N such that sup I(z, z, f)l <
fx.

for all n > no (). Denote

where X* is the dual space ofX.
We have

d,, < inf sup I(a: m, f)l + sup I(a:, z, f)l < d + ,,
--rnE[ fX" rex"

v, > ’o()

hence

sup I(z egz., $)1 -< sup I(z. Pez., f)l + sup I(z= z, f)l < d, + < d + 2e.
fx" fzx" fx"

Since the set E n S(a:; d + .) does not contain any half-line it follows that it is compact where

{S(x;d+) y6X; sup (y z, /) < d+, , >0.
fx.

Thus i"] S(a:;d + )f]E -) and any subsequence of PEz,, has a cluster point which satisfies
>0

sup I(a:- l, f)l- d. Because X is strictly convex, this poim is unique and so PEa:,, 1 PEa: as
fX"

claimed.

DEFINITION 5. A set E is called proximinal if every elemem ofX has a best approximation in E.
That is, the set//7 is proximal ifthe problem

rain{ sup I(z-m,f)l}meE feX"

has a solution for every x 6 X.
THEOREM 11. A nonempty set E of a locally convex linear topological space X is proximinal if

and only if epi sup (., f)[ + E x {0} is closed in X x R.
/x-

Moreover, ifE is a convex set which contains the origin we have
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min{ rex’SUp [(x- m, f)]; m E ’I- max{(x*, x)- PEo{x*); x* E ,5’" NEo }

for every x X, where E is the polar set ofE ([4], p. 136).
PROOF. Taking in Theorem 2.11 (Chap. 3 [I]), f ]’E,S sup I(., f)l,A I,

fX"
we observe that

epi sup l(., f)l + E x {0}
rex"

as claimed.

REMARK 3. It is easy to see that epi sup I(.,f)l -cone((0, l) l), and so ire is a cone,
fx.

then epi sup ](., f)] / E 0 is closed in X R if and only if (0; 1) / E is closed in X. In
fx.

particular, if E is a linear subspace, denoting by 0" X -, X/E the canocal mapping, the above
condition says that 0E ((0, 1)) is closed in quotient X/E.space
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