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1. INTRODUCTION

The best approximation problem in normed linear spaces was considered by several authors including
Burbu [1], Singer [2]. Also in locally convex spaces some results were obtained by Singer [3]. The
principle objective of this paper is to generalize the idea of best approximation problem in locally convex
linear topological space setting and to find the best control.

2. STATEMENT OF THE PROBLEM

Let E be a convex subset of a locally convex linear topological space X and X* be the conjugate
space of all continuous linear functionals defined on X.

Consider the problem

min {% sup | (m —z, ) +IE(m)}
fex:

meX

where z is the given element of X and I is the indicator function such that
0 if meE
IE("‘)={ +oo if m¢E
To solve this problem let us consider the following definition and theorems

DEFINITION 1. Anelement [ € E is called a best approximation to z € X from E if
sup |(z — L, f)| < sup {|(z — m, f)|, forall m € E}. @0
fex: fex:

By Remark 1.1 ([1], p 174) it can be shown that ! is the best approximation to z from E, if and only if
there exists zj; € X™ subject to

FO) + f(z5) < (zg,m) forall me E (2.2)
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where
1
f(m) =3 sup|(m —z, f)f, m € X.
fex-

THEOREM 1. An element [ € E is the best approximation to z € X from elements of the convex
set E if and only if there exists z5 € X such that

@

sup |(z5, )| = sup |(l — =, f)]
zeXc X feXx:

G) (zpm-—z)>sup|il—=z,f)?, foral meE
fex:

where X** is the conjugate space of X*.
PROOF. Now we have

f(zg) = suv{(za,m) - % sup |(m ~ z, f)I;m € X}
fex-
= (z5,2) + sup{(za,m) - % sup |(m, f)I;m e X}
fex-
= @) +y s |2
zeXc X

and the optimality condition (2.2) becomes

1 1 * -
s =z NP +3 swp |5, f) < (e5,m —z),Vm € E. @3)
fex: zeXcX*

In particular, for m = [, we obtain

2
(sup l(e—zvf)l_ sup |(z(.)1$)|) <0
fex: eXcX

T

which implies condition (i). Consequently from inequality (2.3) condition (ii) follows, as claimed.
Conversely, it is clear that condition (i) and (ii) imply that ! is a best approximation, because we have

sup |(1 -z, f)” < (z5,m - z)
ex-

zeXcX*
< sup I(l_ztf)i Sup I(m—z,f)l,Vm €E
fex: fexe

< sup |(-‘55v-‘5)| - Sup '(m_zrf)l
. fex-

and so, we must have (2.1).
COROLLARY 1. If! € E is a best approximation of z € X by elements of the convex set E, then
the following minimax relation

su)g.l(x =1 f)l = min ap X 3)I=l(x',m —-z)
fe zeXCX** '

max min (z*,m — z). 24
sup  |(z*,z)|=1 mEE
zeXCX**
holds, where z* € X*.
PROOF. This follows clearly if we use the relationship between the solutions to the problem (P)

and the existence of the saddle points ([1]). To this end it suffices to remark that the point zg, the
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existence of which is ensured by Theorem 1, is just the solution of the dual problem. This completes the
proof.

REMARK 1. Let d = sup {|(x — m, f)|;m € E} be distance between the point = and the convex
st E. fex

Then we obtain a weak minimax relation by replacing "min" by "inf" because in such a case only the
dual problem has solutions.

Next we shall notice several special cases in which conditions (i) and (ii) of Theorem 1 have a
simplified form. Namely, if E is a convex cone with vertex in the origin, then condition (ii) is equivalent
to the following pair of conditions

(i) (zg,m) <0,Ym € E,ie z} € E°

@) (z5,2)=suplz— & f’

feXx-
where E? is the polar set of E ([4], p. 136).
Here is the argument. From condition (ii) replacing g by — zg, we obtain

(zg,z —nm) > sup |z~ 1, f)’,Yme E,YneN
fex-
because E is a cone. Therefore we cannot have (g5, m) > 0 for some element m € E, that is (ii’) holds.
Moreover, from properties (ii) and (ii’) it follows that
sup |(z — 1, f)* < (=5, — 1)
feX*
< sup |(zp,z)|sup |(z -1, f)l
zeXc X" fex:

=sup |(z -1, ),
feXx:

hence (z§,z — 1) = sup |(I -z, f)|2. Thus we have
fex-
0 > (z5,1) = (z5,2) — (x5, — 1) = (x5, %) —fsu)l; [(z =1, )l
X

and (from (ii) if m = 0)

(z5,2) 2 sup |(z — 1, f)I?
fexs

which implies property (ii’). The reciprocal is obvious.
When E is a linear space, condition (ii’) is equivalent to
(zg,m)=0,Ym e E
because in this case E = — E.
It should be mentioned that the best approximation belongs to

En {:c e X :sup{|(z, )|} < d}
fex:

and it exists if and only if there exist separating hyperplanes which meet E. Moreover, the set of all best
approximations is convex and coincides with the intersection of the set with any separating hyperplanes.
When this intersection is non-empty the separating hyperplane is a supporting hyperplane and is given by
the equation

(z5m—z)=sup |(z L, f)I}, meX.
fex:
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Now, let us study the existence of the best approximation. Let

=i _ 2
d—-mng;:{fs:)g {(m -z, f)] } 2.5)
We easily see that
inf -z, = inf -z, .
"‘.es{ Sup [(m -z f)l} memxg(ﬂm){ sup [(m -z f)l} (2.6)
where

S(z;d+¢€) = {yeX;sup ly—z, )| < d+e},€ > 0.
fex:

THEOREM 2. A proper convex function f : X — ] — 00, + 00] is a lower-semicontinuous on X
if and only if it is lower-semicontinuous with respect to the weak topology on z.

PROOF. We have already seen in Proposition 2.5 ([1], p. 12) that a convex subset of a locally
convex linear topological space is (strongly) closed if and only if it is closed in the corresponding weak
topology on X. In particular we may infer that epi f is (strongly) closed if it is weakly closed. This
establishes the theorem.

THEOREM 3. If the convex set E is such that there exists an € > 0 for which the set
E NS(z;d + €) is weakly compact, then z has a best approximation in E.

PROOF. According to relation (2.6) it is sufficient to recall that a lower-semicontinuous function
on a compact set attains its infimum. In our case, the function is obviously weakly lower-semicontinuous
(see Theorem 2) on the weakly compact set E N S(m,d + ¢).

COROLLARY 2. In a semireflexive locally convex linear topological space every element
possesses at least one best approximation with respect to every closed convex set.

PROOF. The set E N S(m;d + 1) is convex closed and bounded and hence it is weakly compact
by virtue of the Alaoglu Theorem ([5], p. 15).

COROLLARY 3. In a locally convex linear topological space every element possesses at least one
best approximation with respect to every closed, convex and finite dimensional set.

PROOF. In a finite dimensional space the bounded closed convex sets are compact and hence
weakly compact.

DEFINITION 2. Let X,Y be locally linear topological spaces of the same nature. A linear
operator T : X — Y is continuous if and only if it is bounded. In other words there exists K > 0 such
that

sup [(Tl,m™)| < Ksup |(1,T")], ViEX.
m*eY* lreX*

The set L(X,Y) of all linear continuous operators defined on X with values in Y becomes a locally
convex linear topological space by

sup (T, f)l = SUP{ sup |(TLm")};sup |(L, 1) < 1}
feL (X.y) meey rex-

= inf{K;sup |(T1,m*)| < Ksup |(1,I")], Vi€ X}. (2.7)
m*eY" lreX*

IfY = R, we find that X* = L(X, R), called the dual of X, is locally convex linear topological space
defined by
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swp (D) = sup{ 1" (@)ssup } @)
leXc X lreX*
If X is real locally convex linear topological space, then
swp | D) = sup{z'a);sup 1) < 1}‘ @8)
leXc X lreX*

THEOREM 4. Let f; be a continuous linear functional on a linear subspace A of a locally convex
linear topological space X. Then, there exists a continuous linear functional f on the whole of X, i.e.,
f € X*, such that

0] flA=fo
(i) sup |(f,)] = sup |(fo,0)I-
leXcX* leXc X

PROOF. Since fy is continuous on A, by relation (2.8) we have

fo(m) < sup |(fo,])] sup |(m, )], VmeA.
leXcx- rex:

By the Hahn-Banach Theorem ([1], Theorem 1.10, p. 17) for f; and for the convex function
p(z) = sup |(fo,1)| sup|(},1%)].
leXcXxe lrex:

A specialization of this theorem yields a whole class of existence results. In this context we shall
present a general and classical theorem concerning the existence of continuous linear functionals with
important consequence in the duality theory of locally convex linear topological spaces.

THEOREM 5. Let m be a non negative number and let & : B — R be a given real function, where
B is a non-empty set of the locally convex linear topological space X. Then, k has a continuous linear
extension f on all of X such that 1 )s(ug{ |(f,1)] < m if and only if the following condition holds:

XX

< , Ai 1) 3 ’\t ’l.
_ml_sg_‘(; a‘l;: a, )

PROOF. From relation (2.7a) and (2.7b) it is clear that condition (2.9) is necessary. To prove the
sufficiency we consider A = span B and we define f, on A by

i Ah(a,)

=1

, VneN, \;€R, a,€B. 2.9)

folm) = 3" Ah(@), i m=3 Aa €4, ocB.

=1 1=1

’

First, using condition (2.9) we observe that f; is well defined on A. Moreover from condition (2.9) the
con-
tinuity of fo on A follows and  sup |(fo,!)| < m. Thus any extension given under Theorem 4 has all
leXcXe

the required properties.

THEOREM 6. For any linear subspace A of a locally convex linear topological space X and ! € X
there exists f € X™ with the following properties

) f/A=0
D 0 =ins, { swp 0= m, ) = 0.0}
meA (1-eX*

i) sup |(f,0)] = inf { sup |(z — m,z'n} — d(1, A)
leXcX meA | lreX

PROOF. We take B=AU{l} and h : B— R defined by h(m) = 0, m € A, and h(l) = d*(l, A).
We observe that for any A # 0 we have
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AR(D) + an Ah(a,)
=1

= |AR()| = |Ald%(l, A) < |A|d(l, A) sup
lreX

<A1+‘2A.a,,z')

=1

(l + i %a,,l‘)
=1

, YneN, \,€Ra, €B

=d(l, A) sup
rreX:

which is just inequality (2.9) The desired result then follows by applying Theorem 5 Indeed, we have
properties (i) and (ii) and  sup |(f,!)| < d(l{,A). Since m =d(l,A). On the other hand, if we
leXcX=

consider a sequence {m,} C A suchthat sup|(l + m,,I*)| — d(l, A) we obtain
lreA

l+m, FiO)
sy 12 =
SR NED2 I o e P | = Sap 10+ ]
l~eX* lre X"
2
= M_ —d(l, A)

sup [(1+mn,*)|
rex:

which implies sup |(f,I)| > d(l, A). Hence property (iii) also holds.
leXcX=

COROLLARY 4. In a locally convex linear topological space X for every I € X there exists a
continuous linear functional f € X* such that

() f)= sup|@, 1)
lreXe
() sup |(f,D|= sup|(t )]
leXc X lreX

Moreover, if | # 0, there exists g € X* such that
(@) g(1) = sup [(1,1")]
lreX*
(i) sup |(g, D)=L
leXcX
PROOF. By Theorem 6, d(l, A) = sup |({,*)| where A = {0}. Then the corollary completes the
lreXx*

proof.
DEFINITION 3. The space X is strictly convex if every point of the polar set

{l eX:supl|l,f)l= 1}
fex

is an extreme point.
THEOREM 7. A locally convex linear topological space X is strictly convex if and only if the
following equivalent properties hold:
(i) if sup |(z +y, )| = sup |(z, f)| + sup |(y, f)| and = # O thereis ¢ > O such that y = tz,
fex: fex- fex*

(ii) if sup |(z,f)| = sup |(y,f)| = 1 and z # y, then sup |(Az + (1-N)y,f)| < 1forall X €]0,1],
fex- fex- fex-
(iil) if sup |(z, f)| = sup |(y, )| = 1 and z # y, then sup | (3(z +3), f)| < 1,
fex- fex fex-
(iv) the function z — sup |(z, )%,z € X, is strictly convex.
feX
PROOF. Let X be strictly convex and let z,y € X\{0} be such that

sup |(z +y, f)] = sup |(z, f)| + sup |(z, f).
fex- fex: fex:

By Corollary 4 for every z € X, there exists a
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continuous linear functional z* € X* such that (z +y,z") = sup |(z +y,z*), sup |(z"z) =1
z e X zeXCX*
Since

(z,z") < sup |(z, f)I, (w,z*) < sup|(y, f)|
fex fex:

we must have (z,z") = sup |(z, f)| and (y, ") = sup |(y, )], i.e,,
fex: fex-

| =1

— % =Y
sup |(z, )’ sup |(y, f)I’
fex- fex:

Because X is strictly convex it follows that

L _ Yy
sup |(z, f)] ~ sup|(y, f)|’
fex- fex

hence property (i) holds with
sup |(y, f)|
feX*

~osup|(z, )l
fex-

To prove that (i) — (ii) we assume by contradiction that there exists  # y such that
sup |(z, f)| = sup |(y, f)| = 1 and sup |(Az + (1 — A)y, f)| = 1, where A € ]0,1[. Therefore we have
feX- fex: feXx:

sup [(Az + (1 = A)y, f)| = sup [(Az, f)| + sup |((1 ~ A)y, f)I-
fex- fex: fex-

According to property (i) there exists ¢ > 0 such that Az = ¢(1 — A)y. Since sup |(z, f)| = sup |(, f)]
fex: fex:
we obtain A =t(1— ) and so z =y which is a contradiction. The implications (i) — (iii) and

(iv) — (ii) are obvious.
Now we assume that X is not strictly convex Therefore there exist z5 € X* and z;,z, € X with

sup |(z*,z)| =1, sup|(z1,f)| = sup|(ze,f)l=1, 21 # 22 such that (z,,z9) = (zq,27) =1,
zeXCX* fex- fex+

hence (3 (z1 + z2),25) = 1. Thus

1 1 "
(E(zl +:z2),f>\ = sup (5(1:1 +z3),z )
sup|(z*,z)|=1
ZEXCX*

1
> (E(zl +zg),a:5) =1

sup
fexe

contradicting property (ili). Hence property (iii) implies the strict convexity of X. Now, from the
equality

2
Asup |(z, f)F + (1= M) sup (v, ) = {/\sup [, F)l + (1= A) sup [(y, f)l}
fex- fex- fex* feX*

2
+A(1-A) ( sup |(z, f)| — sup |(y, f)l)
fex- fex-

it follows that
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2
sup |(Az + (1 — A)y, f)* < {Asup I(z, /)l + (1 = A) sup I(y,f)l}
fexX fex- fex

< Asup |(z, £)F + (1= A)sup [(y, )I?
fex: fex-

for all z,y € X with sup |(z, f)| # sup|(y, f)| and A € ]0,1[. If sup |(z, f)| = sup |(y, f)| we obtain
fex* fex: fex: fex-
the strict convexity of the function z — sup |(z, f )|2, z € X, from (ii). Thus the implication (ii) — (iv)
feX*

is established and the proof'is complete.

THEOREM 8. If X is locally convex linear topological space which is strictly convex, then each
element z € X possesses at most one best approximation with respect to a convex set E C X.

PROOF. Assume by contradiction that there exist two distinct best approximations!,l; in E.
Since the set of best approximations is convex, it follows that 3 (I; + lp) is also a best approximation.

Hence ifd = mf{ sup [(m — z,f)l}, we have
meE fex+

0<d= sup |(I - llrf)l = supl(:: —127f)l
fex: fexe

(- 3 +m.s)|

= sup
fex:

where X* is the conjugate space of X and thereby

1
(E(I - ll)v .f)‘ = sup
fex:
In view of the strict convexity (see Theorem 7) we have

(me-t+ 55— 1)

sup
fex*

(3e-ws)|=1

1> sup (I—%(ll'l-lz),f)‘:l

fex

1
dex.
which is a contradiction. This completes the proof.

REMARK 2. This property is characteristic of the strictly convex spaces: if, in a locally convex
linear topological space X, every element possesses at most a best approximation with respect to every
convex set (it is enough for the segments), then X is strictly convex.

Indeed, if we assume that X is not strictly convex, then there exists z,y € X,z # y, with
sup |(z,f)| = sup |(.f)| = sup | (} (z+y),f)| =1. Furthermore, sup |(az+(1~a)y,f)|=1,Va €[0,1].
fex- feX: fex fex:

Hence the origin has at the best approximation with respect to the closed convex set [z, y] every element
of this set, and this clearly contradicts the uniqueness.

From Corollary 2 and Theorem 3 it follows that in a semireflexive strictly locally convex linear
topological space, for every closed convex set E we can define the function PeX — X by Pgz =1,
where [ is the best approximation of X by elements of E. This function is called the projection function
of the space X into E. We note that Pgx € E foreveryz € X.

DEFINITION 4. Let us consider the following general family of minimization problems

(P,)min{ F(z,y);z € X}, y€Y

where X, Y are locally convex linear topological spacesand F': X x Y — R. Let us denote by
h(y) = inf{F(z,y);z € X}, ye€Y

and H = {(y,a) €Y x R; there exists T € X such that F(Z,y) < a}.
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THEOREM 9. Let X,Y are locally convex linear topological spaces and F: X x Y — ]-o00, +00]
be a positively homogeneous and lower-semicontinuous function satisfying the following coercivity
condition

F(z,0) >0 forany z € X|{0}. (2.10)
Then, if epi F' [1] is locally compact, every problem P, has an optimal solution whenever its value is

finite.
PROOF. It is easy to observe that

H = Projyxr(epi F).
By hypothesis epi A is a closed cone and so (epi F'), = epi F. Therefore, it is sufficient to use Corollary
1.13 ([1], p. 28) for T = Projyxr and A = epi F, taking into account that the separation condition
(1.42) of Corollary 1.13 ([1], p. 28) may be written as condition (2.10).

THEOREM 10. If E is a closed locally compact convex set of a strictly convex locally convex
linear topological space X, then the projection function is continuous on X.

PROOF. If z, — z, for every € > 0, then there exists ng(€) € N such that sup |(z, — z, f)| < ¢
fex-

for all n > ng(e). Denote

where X* is the dual space of X.
We have

d. 5inf{supl(z—m,f)|+ supl(:c,,—z,f)|} <d+e VYn>ng(e)
meE fex: fex:

hence

sup |(z — Pgzn, f)| < sup |(zn — PgZa, f)| + sup |(zn — 2, f)| < dn +€ < d +2e
fex fex- fex-
Since the set E N S(z; d + €) does not contain any half-line it follows that it is compact where
S(z;d +¢) = {y eX,supl(y—=z,f)| < d+e},e > 0.
fex:

Thus () S(z;d +€)NE #0 and any subsequence of Pgz, has a cluster point ! which satisfies

0
sup |(z — I, f)] = d. Because X is strictly convex, this point is unique and so Pgz, — 1 = Pgz as
fex-

claimed.
DEFINITION 5. A set E is called proximinal if every element of X has a best approximation in E.
That is, the set E is proximal if the problem

ggg{fseu;_l(r—m,fﬂ}

has a solution for every z € X.
THEOREM 11. A nonempty set E of a locally convex linear topological space X is proximinal if
and only if epi sup |(., f)| + E x {0} is closed in X x R.
fex-

Moreover, if E is a convex set which contains the origin we have
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min{fsu)gl(z —-m,f)ime E} = max{(z",z) — Pp(z");z" € S" nE’}

for every z € X, where E? is the polar set of E ([4], p. 136).
PROOF. Taking in Theorem 2.11 (Chap. 3 [1]), f =Ig,g= — sup|(, /)|, A=1,
feXxs

we observe that
H= {(m+x, supl(:c,f)l+r) €EXxRmeE,zeX,r> 0}
fex-
= epi sup (., f)| + E x {0}
fex

as claimed.
REMARK 3. It is easy to see that epi sup|(., f)| = cone(5(0,1) x {1}), and so if E is a cone,
fex:

then epi sup|(., f)] + E x {0} is closed in X x R if and only if S(0;1) + E is closed in X. In
fex

particular, if E is a linear subspace, denoting by ¢g : X — X/E the canonical mapping, the above
condition says that ¢ (S(0, 1)) is closed in quotient space X/E.
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