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ABSTRACT. An easy method is obtained to prove many inequalities using Lagrange mutipliers.
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1. INTRODUCTION
Let us assume that dl, dn are unit perpendicular vectors in an n-dimensional space X. In

particular dl, ah, and d3 are the unit perpendicular vectors i, j, and k in the 3-dimensional space. Any
vector v in X is usually uniquely written in the form

v E Aida

for scalars A,. We define

V J(zl, z,) ’A,(zl,...,z,)d,,
t=l

The equality holds iffp q, for each i.

PROOF. Let the q,’s and a be fixed; set

f(1, Pn) P, In(p,/q,)"
t---I

p,, q,

_
O,

we aim to minimize f subject to the constraint

g(p p,,) p, a o.

Kapur and Kumar (1986), have used the principle of dynamic programming to prove major inequalities

due to Shannon, genyi, and Holder, see [1]. In this note we give a new method using Lagrange
multipliers.

2. SHANNON’S INEQUALITY

THEOREM 2.1. Given /9/- a, qi b, then
=1 t=l

aln(a/b) < E p, ln(pi/qi), p,, q, >_ O.
t----1
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There is a minimum achieved where 7 f A 7 g because g is linear and f is convex, since its second
order partials are all non-negative

i=1 =1

1 + In(pi/q.) A
p a, a

q q2 q, b, b

Therefore

or

minE p, ln(p,/q,) In(a/b) p, a ln(a/b),

a ln(a/b) <_ pi ln(I&/q,).

If a b 1, we get Sharmon’s inequality

pi ln(p,/qi) > 0 and p, ln(pi/qi) 0 iff p, q, for each i.
i=1

3. RENYI’S INEQUALITY

THEOREM 3.1. Given a, a, b, b, then
t=l ,=1

1 (pq_, p),1 (aab1-a-a) < E 1
p,, q, >0, 0 < a # 1.

The equality holds iffp, q/for each i.

PROOF. Let the qi’s and a be fixed and write

f(pl pn
1

,=1
o 1

o(p ,) )’ v, , o
t=l

by the convexity of f and linearity of g. Hence

1
aObl-,

a-1 ,=1 a-1

Ifa b 1, we get Renyi’s inequality

a--1

4. HOLDER’S INEQUALITY
P A,THEOREM 4.1. Given a, b, =B, abi=C, a,b,>_0, p,q>l, + =1,

t=l ,=1 ,=1
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then

C < AX/r’B1/q. (4 1)

PROOF. This follows from Renyi’s inequality, taking a l/p, ai fi, b q,q, or, we prove the
result directly as follows:

let the a’s and C be fixed and write

f(bl, bn) Aq/PE bqt, g(bl bn) atb, C 0
t=l =1

7 f A $7 9 =" qAq/’ bq-ld A oa
=1 :=1

::, Aq/’b,q-1 (A/q)at (4.2)

and

(4.2) = Aq/p (A/q)C, (4.3)

AqB (A/q)A, as p(q- 1) q (4.4)

(4.3) & (4.4) =, k/q Cq-1.

Therefore, by the convexity off and linearity of g,

rrfm(Aq/r’B) Cq,
or

C < A1/’B1/q.

5. GENERALIZATIONS OF HOLDER’S INEQUALITY

THEOREM S.1. Given a A, b B, c" C, and a,b,c D, , b,, c >_ 0,
=1 :=1 =1 :=1

?++;=1, then

D < al/r’BUqCUr.

PROOF. This follows by an easy application ofHolder’s inequality:

c

6. MINKOWSKI’S INEQUALITY

THEOREM 6.1. Given a’ A, E b B, and E (a + ai)P C, q,, b, > 0, p > 1, then
i=l =1 =1

C < A +

PROOF. Let the b,’s and A be fixed and write
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f(1, an)= (, + b,)p, A=O(.al,...,a a

Therefore,

or

t=l t=l

ba b,
::*. --Co
a an

max Ck (a, + ca,)’

( + c)A
A7, +cA7,

AT, + BT,,

C7, < AT, + BT,.

7. ARITHMETIC-GEOMETRIC-MEAN INEQUALITY
THEOREM 7.1.

1
t -- Xt-

t=l
/"

t=l

PROOF. Write

z,-C=O..q(Zl ,=n)
n

Let C be fixed, we have

Therefore

or

t=l Xt n
t=l

n
=xt= -y

= C-- -yo

maxy =-y=C,
#

X _< X.
t=l t=l
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