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ABSTRACT. We are concerned with the asymptotics of the spectral measure associated with a

self-adjoint operator. By using comparison techniques we shall show that the eigenfunctionals of

L2 are close to the eigenfunctionals L1 if and only if dr1 dF2 as A oo.
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1 INTRODUCTION

We would like to obtain a relation between the growth of the spectral measure of a self-adjoint

operator and the behaviour of its eigenfunctionals. In this study we shall assume that we have

two "close" self-adjoint operators acting in the same separable Hilbert space, H say. Without loss

of generality we can assume that both operators have simple spectra. To this end, let us denote

by (A) and y(A) the eigenfunctionals of L1 and L respectively. Recall that the spectrum of a

self-adjoint operator is defined by

VA 6 a, 3 ,,. 6 D{L,} / I199,,,,II and IIL,9,,.- Aqo,,.l] 0

where I 2. In case A is in the continuous spectrum the sequence is not compact in the Hilbert

space H. For this we can assume the existence of a countab]y normed perfect space , such that

where the embeddings are compact, for further details see [I] and [2]. For the sake o[ simplicity

we shall assume that the embeddings are given by the identities and so

le #ell (l,) =< l, # >(R)x,

Since the sequence p. is bounded in H it is then compact in (1)’, which implies

and similarly for the operator L; Since both operators are acting in the same Hilbert space H,
we shall assume that the space ’ contains both systems of eigenfunctionals; i.e.,

{y(A)} C ’ and

Recall that the system {y(A)} helps define an isometry for L
V f e f ]2()) <

I where ](A)e L.r2()
Similarly for
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f [ ]I(A)(A)dF(A) where L]rl()
These transforms dee immetries, and Parsel equity elds

where the nondecreing functions F() and F2() are 11 the spectral mees sociated

with L and L, rpectively. It is these fctions that we wod like to estimate as

In all that follows y() () means Vf

and dr() dr2(A) mes that Vf e Lr() L()
F()r(.) F(n)er(n)

In this work, we shah try to answer the following problem:
Statement of the Problem: der what contions

y(A) () as dr() dr2() as

In order to swer the above qution, we shl compare the selhadjoint operators L and L2,
’e [3]. call that a sft operator or transmutation is defined by

() yv() e a;

Clearly the deition of V depen on a2 and al and we shall aee to set

y(A)=0 if AChe, and (A)=0 if ACal

Contion a C a inses that V0 0 and so deles an operator on the gebrc span of

{(A)}. Thus it is clear that in order for V and V- to est nnear operator it is nessary that

a C a and al C q2

a2 al.

It is really n that {(A)} form a mplete t in the refleve space (perfect) ’, and so the

spa generated by {(A)} is dense in ’. Consequently V is densely deed. Ts in tns lows

us to define the adjoint operator V .
2 MAIN RESULTS

r.l, such thatWe shall agree to say FI(A) is Abs-dF2 if there exists g(r)

FI(A) g(n)dr(/) + FI(0)

This fact shall be denoted by
dF

() =- -7()e
In this case the condition dFl() dF2(A) in the statement of the problem can be restated as

g(A) x as A oo. Recall that due to reflexivity of the space (I), the operator V’ is defined in

(I) and since (I) - H, V is actually defined in H. Let us denote this extension to the space H by. Since we are interested in the case where y(A) o() we can expect V to be bounded. In
this regard we have the following result:
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Theorem 1: If the extension H H, is a bounded operator then

Fl(A) is dF2-ABS continuous.

Proof: It is dear that for f . Dr,

In other words

< f,y(A) >oo’ < f,Vm(A) >oo’

< V’f,p(X) >oo’

Equation 9..I obviously holds for f E H. Indeed let fn E Dr, C H such that fn _n f H.
Given that Q is a bounded operator in H, we obviously have Qfn Qf. Using the fact that

Vn, ]nz(A) VA (A) d the imetries are bounded operators we have/ and QA
Vf Therefore

/(A) @f (A) f H. (2.2)

Fromw we deduce that Vf H

(Q’f,
ii,fll
cllfll
cJ lye(A)I dF() Vf H.

Thus each dF negligible set is a dF negnble t. Henceforth F (A) to be dF()-Abs continuo.

The above inequafity is exactly a scient contion for the don-Nikodym threm to hold, s

[].
In all that follows we shall sume that dF() is dF2 Abs continuousw is denoted by

dFg() (1.
We now nd to dee a nction of an operator, namely g(L2) for the next rt:

H
f (L)f fO()p()()dr().

Theorem 2: Assume that V admits clure in O d F is Abs-dF2(A) then

Priori From equation 2.1 and the fact that the embedngs e defined by identities, we dedu

that Vf, Dr, C

/()()drx() V’/V’ drx() (2.3)

(Y’y, Y’) (2.4)

< V’f, V’ >,,
< I, Vv’
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However the left handside of equation 2.3 can rewritten as

2

v/g(n2)f v/g(L=) dF(A)

(v/g(L=)f,v/g(L)) (2.5)
< f, v/g’(L)’v/g(L:) >,.

Observe that if we set f in equations 2.4 and 2.5 then we would obtain

llx/g(L_fll llY’fll (2.6)

from which we deduce that Dv, C D(v/ C , from we obtn

V 6 Dv, g(L)’gCL) VV’. (2.7)

LRemark: Ogrve ha gosh operaors C9() Cg(L) ana V’ are mappings from
IL is ey o s Lha if we restrict equaLion 2.7 go

hen i redus Lo

v/e D, O,(,) (n) (L=) YV’ i. ’ (2.8)

The next reset descfib the domn of ’.
Theorem 3: is densely defined if and only if Lr() Ler() is dense in Ler().
Proof: From equation 2.2 it is rly sn that

2

Then use the fact that f ]2 is an isometry betwn H and Lr().
This work is bed on the following reset.

Theorem 4: Aume that

V admits closure in ’
F is Abs- dF(A)

ests

V" is a bounded operator

then

g(A)(A)- y(A)= (Y’- 1)y(A) in ’.
Proof: Notice that contions of Threm 2 hold and it follows that

g(L)’g(L2) Y’ in ’ (2.9)

By the above ntion we have that Y’(L2)’g(L)f e if f e Dw C . However since it is

sumed that - ests, then equation 2.8 yiel

(g(L=))’ g(L) V’ in ’ (2.10)-1
In order to proud further we nd to extend the operator V to . For this observe that since- is a bonded operator, V V is a bonded operator in . Hence V is defined for

all elements in ’, and in particar for y(A), thus
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V-1 v/g(2) v/g(L2)y(A) V’y(A).

We now need to compute vg(L2) v/g(L2)y(A). Let f
_
D,, C then

< f, g(L)’yL)y(A) >x, < g(L)f, g()y(A)
< g(L)’g(L:)f, y(A)

< f,()u() >

Lwhere we have the tact that g(2) g(L2)f VVf . Hence

(L2)’(L,)()=()() i, ’
where g(A) (A) is a rl ction. Hence we have

()-u() ’u().
Sin by defimtion we have -ly(A) (A) we obtmn

a()v()- u()= (’- )u() i. ’.

We eily du the follong reset:
Corollary 1: t contions of Threm 4 hold then

()v()- u() 0 W’- 1)() 0

Corollary 2: t contions of Threm 4 hold and (V 1)y(A) 0 A then

()1 v()-u()0 -.
Proof: By hypothesis d Corollary 1 we have V/

()/() _/2() 0 .
Thus if g(A) then/I(A) -/2(A) 0 winch means that (A) y(A) 0 as A
Conversely ](A) -/2(A) 0 together with y(A) g(A)(A) 0 impes that

()/1()-/=()-0
i.e. g(A) 1A.

Corollary 2 suggests to write V + K. In ts ce Threm 2 wod read

a()V()-U()0 ’()0
The question we wod like to answer now is der what contion wod

K’y()0 as A.

First we ne to obrve that the above conrgence holds in . Indd by construction the

fction y(A) is in d the operator K orinally w ded in must be extended to

This is eily aceved if the operator K, i.e. V, is bonded in .
Theorem 5: Let

V- be a bounded operator.- I, be such that H is densely defined in

then

K’()0 .
Proof: call that for each A, there ests a bounded sequence , Dn such that
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., 6 DL2, n, 1, and

The last condition can be written as

Atp,t,.x L2cfl,, +
where e(n, A) 0 in H as n oo. Ts allows us to obtain the following

< f,g’y(A) >x.’ < gf, y()

lira < Kf,.,x
1
(A=,,Kf)

1
i(L,, + e(n, A), Kf)

1
i(L=,,Kf) + i(e(n, A), Kf)

1
i(=,,Lgf) + i(e(n, A), Kf)

, Lgf +i [l(e(n, )]]gf]l

So A we sh1 obtn < f, K’y(A) >x, 0. Ts last limit means that

K’y(A) O .
call that in order for the conclusion to hold we nd LK to be at least densely defined in

Remark: The condition V bonded can replac by denly dned. This forces

m to use Bre’s Threm to obtn the density of Dv DLK in .
Theorem 6: Let the conditions of Theorem 2 hold, and

V- be a bounded operator

(g(L2) 1)-IK be a bounded operator in

then

Proof:

(gCA) 1)yCA) 0 K’y(A) 0 as A co.

Since the [g(A)- 1]y(A) 0 we obtain < f,K’y(A) >,--, 0

0 as

Corollary 3: Assume that conditions of Theorem 4, hold and

y(A) are bounded functionals for large A

and so K’V(A)

(g(L2) 1)-IK be a bounded operator in
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then

g(A)-lO =,, y())-qo())O as A

Proof: It suffices to see that (g(A) 1)y(A) 0, and since Theorem 6, is applicable

From Theorem 4, we deduce that

K’y() 0 as .
g()() u() - 0.

It remains to see that since g(A)

3 EXAMPLES

Below we shall consider two simple examples to illustrate the above results.

Let Lx and L2 be two self-adjoint differential operators in L2[0, x) defined by

LxI =- -f"(x) + q(x)f(x)
and

Lg_I (x)
nf(O) f’(O) 0 nf(O) f’(O) O.

where In < x. Let the eigenfunctionals associated with L and L2 be defined by

( L’(x,)=(x, )
and { Ly(x,’)=Y(X, )

qo(O, ,) 1, qo’(O, )) n y(O, ,) 1, y’(O,/) n

,in(-)) It is clear thatwhere y(x, .k) cos(/-Ax) + v

sin(vr(x t))(’ ) (’) + q( )qa(t, ,k)dt.

By the Pdemman-Lebesgue theorem we have

(, ) (, ) 0 .
It is also known that the following representation holds

o(x, )) (x, ) + K(x, t)(t,

(V’- 1)y(x, )--

Therefore if (V’- 1)y(x, ) 0 then

drx(____) as -.
d), 7r ,k + n

Remark: It is known that if q’(x) . Li"c[O, x) then for each fixed x Ku(x, t) . Ll:[0, x) and

hence L2K is densely defined. Therefore Theorem 5 is applicable.

The next example deals with the generalized Sturm Liouville operator. Let

Llf =- --fff (x) + q(x)f(x)
and

f’(O) O. f’(O) O.

where w(x) x as x 0 and a > O. In this case the operator L2 corresponds to a string whose

[5, 151]length and mass are infinite, and is known to be self-adjoint in the space Lxo, see p.

Then formally
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We shall see that the behaviour of w(x) 0 dictates the behaviour of the spectral function

at infinity. Although this result is known, see [6], we shall provide a different treatment as it is

stated in [7]. For simplicity let the eigenfunctionals associated with Lland L2be defined by

(0, ) , ’(0, ) 0 (0, ) , ’(0, 0.

It is clear that

qo(x, A) y(x, A) + R(x, t, )q(t)(t, )dt.

where R(x, t, A) is the Greens’ function and it is shown, by the semi-classical approximation, see

[8], that R(x, t, A) 0 as A oo. Therefore we have that o(x, A) y(x, A)
The solution y(x, A) are known explicitly,

y(x,A) vAJ_((
a + 2)x ).

and A {2’,where +J r(1-)"

Therefore provided (Y’- 1)y(x, A) -- 0,we shall have

rl(,X) r(a) o.

where, see [3], r() fo > 0.
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