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ABSTRACT. In 1961, Z. Frolik proved that if f is an open and continuous mapping of a metriz-
able separable space X onto Baire space Y and if the point inverses are Baire spaces, then X is a
Baire space. We give a generalization to semi-continuous and semi-open mapping of this theorem

and extended it to the several types of mappings.
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0. INTRODUCTION

The inverse image of a Baire space does not need to be a Baire space, even in the case when
the mapping is a continuous open surjection for which each point inverse is a Baire space. Indeed,
In (18], Oxtoby gave an example of a Baire space X such that the cartesian product X x X is
not a Baire space, but the projection mapping from X x X onto X is continuous open for which
each point inverse is a Baire space. Later in [13], Krom showed that if there is such an example
then there is also a metric Baire space whose square is not a Baire. In fact, he used the example
given by Oxtoby in [18] to answer, negatively, the open question of whether products of metric
Baire spaces are Baire {5, p120], [18, p159] and [20, p292] and showed how to obtain from any
Baire space X, an associated metric Baire space K (a space of countable sequences with the Baire
metric [23, p124]) such that X x X is a Baire space iff K x K is a Baire space, where the space
K is an ultrametric space [6, p38].

The concept of f-continuity was introduced by S.V.Fomin [8]. In 1961 N. Levine [14] introduced
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weak-continuity and in 1963 he [15] defined semi-continuity as a weakened form of continuity. On
the other hand, in 1968 , M.S.Singal and A.R.Singal [21] introduced almost-continuous mappings,
almost-open mappings Moreover, M.Biswas [2] defined semi-open mappings which contain the
class of open mappings and in 1984 D.A.Rose [19] introduced weakly-open mappings as a new
weakened form of open mappings.

This paper studies the inverse image of second category spaces and Baire spaces under these
various types of mappings. Here we consider the following mappings f : X — Y which are;

(1) f is semi-open and semi-continuous

(i1) f is semi-open and almost-continuous

(iii) f is feebly-open and almost-continuous

(iv) f is weakly-open and weakly-continuous

(v) f is weakly-open and #-continuous

(vi) f is weakly-open and almost-continuous

(vii) f is almost-open and almost-continuous

In section 2 at first a basic theorem (Theorem 2.5) which we need the proof of our main
theorems is given as a generalization to the above first three classes of mappings of [9, Theorem
2'] on the inverse image of second category spaces. Here the space X is assumed to be second
countable. Furthermore we show that this theorem can be extended to the classes of mappings
which are given in the above last four cases, in the case when X is a metrizable separable space
(Corollary 2.6) and it is also valid for feebly-open and weakly-continuous (6-continuous) mappings
in the case when X is second countable space and Y is almost-regular space (Corollary 2.7). And
then we give the proof of our main theorems concerning the inverse image of Baire spaces. The
first of them (Theorem 2.1) is a generalization to semi-open and semi-continuous mapping of [9,
Theorem 2] in the case when X is a second countable space. Second one (Theorem 2.2) is an
extention to the classes of mappings which are given in the above last four cases of {9, Theorem
2] in the case when X metrizable separable space.

The most frequently used notations follow. Let A be a subset of a topological space X. The
closure of A in X and interior of A in X will be denoted by A and intA respectively. The
complement of A in X is X — A. Throughout this paper X and Y will always denote topological
spaces on which no separations axiom are assumed unless stated explicitly. No mapping is assumed
to be continuous unless stated.

1. PRELIMINARIES

In this section we give a survey of notions and background results used in this paper.

DEFINITION 1.1. Let A be a subset of X. A is said to be a semi-open [15] if there exists
an open subset O of X such that O C A C O.

The following results can be found in [15].

THEOREM 1.2. A subset A in X is semi-open if and only if A C intA.



INVERSE IMAGE OF BAIRE SPACES 425

THEOREM 1.3. Let ACY C X. If Y is a subspace of X and A is semi-open subset in X,
then A is semi-open subset in Y.

THEOREM 1.4. If A is open and S is a semi-open subset of X, then AN S is semi-open in
X [7, Theorem 1.9).

DEFINITION 1.5. A mapping f : X — Y is said to be semi-continuous [15] (resp., semi-
open [2]) if for each open subset V in Y (resp. open subset U in X), f~!(V) is semi-open in X
(resp. f(U) is semi-open in Y).

The following results which will be needed for our proof in the sequel.

THEOREM 1.6. Let f : X — Y be semi-open and let A be an open subset of X. Then
fia: A—> f(A) defined by f,a(z) = f(z), for all z € A is semi-open .

PROOF. Let U be any open set in A. Since A is open in X, then U is also open in X. Since f
is semi-open then f(U) is semi-open in Y. Consequently f(U) is semi-open in f(A) by Theorem
1.3.

THEOREM 1.7. Let f : X — Y be semi-continuous and let A be an open subset of X.
Then f/4 : A — f(A) defined by f/a(z) = f(z), for all z € A is semi-continuous.

PROOF. Let G be any open set in f(A). Then there exits an open subset V in Y such
that G = f(A) N V. Consequently f/’Al(G) =ANfYG) = An f~1(f(A) N V). From this we
have f;(G) = AN f=!(V). Since f is semi-continuous, then f~!(V) is semi-open in X and also
AN f~}(V) is semi-open in X by Theorem 1.4. Hence f/'Al(G) = AN f~Y(V) is semi-open in A
by theorem 1.3.

DEFINITION 1.8. A mapping f : X — Y is said to be almost-continuous [21] (resp.
weakly-continuous[14], #-continuous [8]) if for each £ € X and each neighborhood V of f(z),
there exists an open neighborhood U of x such that f(U) C int(V) (resp. f(U) C V, f(U) C V).

REMARK 1.9. The following implications are known [17, Remark 1] and neither implication
is reversible.
almost continuity — #-continuity — weak-continuity

The counter examples to the converse of the first implication and the second implication can
be found in {12] and [21] respectively.

DEFINITION 1.10. A topological space X is said to be almost-regular [22] if for each
z € X and each regular open set G containing x, there exists a regular open set V such that
zeVcVca.

The following results which give the sufficient conditions for a weakly-continuous mapping to
be almost-continuous, will be used in the sequel.

THEOREM 1.11. If Y is almost-regular and f : X — Y is weakly-continuous, then f is
almost-continuous [17, Theorem 1.].

THEOREM 1.12. If f : X — Y is a weakly-continuous open mapping, then f is almost-

continuous {21, Theorem 2.3].
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We shall require the following known results.

THEOREM 1.13. Let f : X — Y be almost-continuous. Let A C X be such that f(A) is
open in Y. Then f/, : A — f(A) is almost-continuous {16, Theorem 6].

THEOREM 1.14. A mapping f : X — Y is almost-continuous if and only if the inverse
image f~1(B) of each regular open set B in Y is open in X (21, Theorem 2.2].

DEFINITION 1.15. A mapping f : X — Y is called feebly-continuous [9] (resp. feebly-
open [9]) if for every nonempty open set V in Y. (resp. for every nonempty open set U in X)
f~YV) # 0 imlies int f~1(V) # @ (resp. int(f(U)) # 0).

REMARK 1.16. The following implications hold:

i) semi-open — feebly-open
ii) If the mapping is surjective then semi-continuous — feebly-continuous

These are immediate consequence of their definitions. But the following example, due to T.
Neubrunn [24], shows that none of these implications is reversible.

EXAMPLE 1.17. Let X and Y be the set of real numbers with the usual topology. Let the
mapping f : X — Y be defined as follows f(z) = z,ifz # 0and z # 1; f(0) = 1, f(1) = 0. Then
f is one-to-one, feebly-continuous and feebly-open but is neither semi-continuous nor semi-open .

However we have the following result which gives some sufficient conditions for a feebly-open
mapping to be semi-open .

THEOREM 1.18. Let f be a mapping from X into Y. If any one of the following conditions
holds, then f is semi-open .

(i) f is feebly-open and weakly-continuous

(i1) f is feebly-open and #-continuous

(iii) f is feebly-open and almost-continuous

PROOF. Suppose that (i) holds and let A be any open subset in X. To prove that f is semi-
open , it is enough to show that f(A) C m by Theorem 1.2 and Definition 1.5. Let y be
any point of f(A). Hence there exists a point x of A such that y = f(z). Let V be any open
neighborhood of y. Since f is weakly-continuous, there exists an open subset U containing x such
that f(U) C V. Therefore z € (U N A) and since f is feebly-open , then int(f(UNA)) # 0. Let us
put W = wnt(f(U N A)). From this we have W C f(U) Nnt(f(A)). Since f(U) C V, we obtain
W C V nunt(f(A)). This shows that V Nint(f(A)) # 0. Consequently y € int(f(A)).

It is clear that both the case (ii) and the case (iii) implies the case (i) by the Remark 1.9. Therefore,
for both cases we have also that f is semi-open .

DEFINITION 1.19. A mapping f : X — Y is called almost open [21] (resp. weakly-open
[19]) if the image of every regular open subset of X is an open subset of Y (resp. for every open
set U of X, f(U) C intf(T)).

REMARK 1.20. The following implications are well known [19] and none of these implica-

tions is reversible in general, as is shown by the following examples
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openness — almost openness — weak-openness

EXAMPLE 1.21. Let X be the set of real numbers and & be the usual topology on X. Let
the topolgy 7 on X be generated by HU{UNQ/U € U} , where Q is the set of rational numbers.
Then the identity mapping ¢ : (X,7T) — (X,U) is almost-open, but it is not open.

EXAMPLE 1.22. Let X = {a,b,¢c,d}, T = {X,0,{b},{d},{b,d},{b,c,d}} and ¥V =
{1,2,3},7" = {Y, ¢, {1},{1,2},{1,3}}. Let f: (X,T) — (Y,T’) be given by f(a) = 1, f(b) =
2,f(c) = f(d) = 3. Then f is weakly-open, but since {b} is regular open in (X,7) and
f({d}) = {2} is not open in (Y,T"), then f is not almost-open

We recall the following results which will be used in the sequel

THEOREM 1.23. If X is regular and f : X — Y is weakly-open, then f is open [19,
Theorem 7).

THEOREM 1.24. Let A be a subset of X. Then, the following properties are equivalent [3,
Theorem 1]

(i) A is semi-closed.

(il) intAC A

(iii) X — A is semi-open .

The following well-known results concerning the Baire spaces which will be used in the sequel,
can be found in [1],[4],[10],{11]

THEOREM 1.25. Every open subspace of a Baire space is a Baire space.

THEOREM 1.26. Every space which contains a dense Baire subspace is a Baire space.

THEOREM 1.27. Every open subspace of the second category of a space X is a second
category subset relative to X.

We shall require the following remark in the sequel.

REMARK 1.28. Let Y and Z be subspaces of a space X. Suppose A C Y N Z, then the
topologies on A induced by those of Y and Z are identical.

2. INVERSE IMAGES OF BAIRE SPACES

In this section, at first we give a generalization of Frolik’s Theorem [9, Theorem 2,p.383] on the
inverse image of Baire spaces which was cited in the abstract of this paper. And also we extend
it to several types of mappings.

THEOREM 2.1. Let f be a semi-open and semi-continuous mapping from a second countable
space X on to a Baire space Y. If the sets of the form f~!(y), y € Y are Baire spaces, then X is
a Baire space.

THEOREM 2.2. Let f be a mapping of metrizable separable space X onto a Baire space Y.
Suppose the sets of form f~!(y), y € Y are Baire spaces. If any one of the following conditions
holds, then X is a Baire space.

(1) f is weakly-open and weakly-continuous.

(ii) f is weakly-open and 6-continuous.
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(iii) f is weakly-open and almost-continuous.

(iv) f is almost open and almost-continuous.

Before proving these theorems, we need the following Lemmas. At first, we shall prove the
relations (a) and (b) in Lemma 2.3 which were given by Z. Frolik in [9, p.384] without proof in
order to use them in the proof of Lemma 2.4.

LEMMA 2.3. Let f be a mapping of second countable space X onto a space Y. Let F
be a subset of X and let {U,| n = 1,2,...} be an open base for X. If M, = {y € Y| 0 #
f~Yy)NU, C F} and M(F) is the set of all y € Y for which the interior of f~!(y) N F (with
respect to f~!(y)) is nonempty, then the following properties hold.

(a) My =Y — f(U.N (X = F))

(b) M(F) = U=, M,

To prove the part (a) suppose that y belongs to M,. Then f~(y) NU. C F. By taking
complements, we have (X — F) C (X — f~!(y)) U(X = U,). From this we obtain U, N (X — F) C
/=YY —{y}). This implies that f(U,N (X — F)) CY — {y}. Therefore y belongs to complement
of f(U. N (X — F)). Hence M, C Y — f(U. N (X — F)) For the reverse inclusion, let y be
an arbitrary point in ¥ — f(U, N (X — F)), then f~'(y) C f7'[Y — f(U. N (X — F))] and
YY) C X = fFHf(U.N(X~F))] C X = (U (X =F)). Consequently, f~(y) C (X —Un)UF.
This implies that f~!(y) N U, C F. Hence y belongs to M,,. Thus Y — f(U, N (X — F)) C M,.
This completes the proof of (a).

The proof of the part (b) Suppose that y belongs to M(F). Then int -1(y)(f~(y)NF) # @ by the
definition of M(F). Since {Un|n = 1,2,...} is an open base for X then there exist a positive integer
no such that @ # f~1(y) N Un, C f~!(y) N F. This shows that y belongs to M,,. Consequently
this impies that y € U2, M,. Hence M(F) C U, M.. To prove the reverse inclusion, let y
be an arbitrary point in 32, M.. Then there is a positive integer no such that y € My,. Thus
0 # fY(y) NUn, C F. by the definition of M,,. This means that int;-1,)(f~'(y) N F) # 0.
Therefore y belongs to M(F). Hence U2, M, C M(F). This completeis the proof of (b).

LEMMA 2.4. Let f be a mapping of a second countable space X onto a space Y. Let F be
a nowhere dense closed subset of X. Denote by M(F), the set of all y € Y for which the interior
of f~Y(y) N F (with respect to f~!(y)) is nonempty. If any one of the following conditions holds
then the set M(F) is a first category subset of Y.

(i) f is semi-open and semi-continuous.

(ii) f is semi-open and almost-continuous.

(iii) f is feebly-open and almost-continuous.

PROOF. Suppose that (i) holds and let {U,| n = 1,2,...} be open base for X. Let put
M, ={yeY| 0+# f'(y)nU, C F}. Now suppose that M(F) is not of the first category
subset of Y. Since M(F) = U3, M, by Lemma 2.3, then there exists a positive integer no such
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that int(M,,) # 0. On the other hand, since f is semi-open and

M, =Y = f(Un, N (X = F))

by part (a) of Lemma 2.3, then M,, is semi-closed and consequently int(M,,) C intM,, by
Theorem 1.24. Thus intM,, # 0. By the definition of My,

0# f(intMn,) N Uy, C F

Since f is semi-continuous, then f~*(intMy,, ) is semi-open and f~!(int My, )N Uny, is also semi-open

by Theorem 1.4. Hence there is a nonempty open subset O of X such that
0 C fY(intM,,) N Uy, C O.

However, this would contradict F' being nowhere dense in X.

Now suppose that (ii) holds and M(F) is not a first category subset of Y. Since the mapping
f as in the case of (i) is semi-open , then by repeating the same operations, we can obtain the
following result,

0# f(intM,,)NUpy C F

since intM,, is regular open and f is almost-continuous, then f~!(intMp,,) is open by Theorem
1.14 and consequently F is not nowhere dense subset in X. This is a contradiction.

The proof for the case (iii) is a direct consequence of the case (ii) of this lemma by the case
(iii) of Theorem 1.18.

The following Theorem now makes it easy to prove Theorem 2.1. and Theorem 2.2.

THEOREM 2.5. Let f be a2 mapping of a second countable space X onto a second category
space Y and suppose the sets of the form f~!(y),y € Y are second category spaces. If any one of
the following conditions holds, then X is a second category space.

(i) f is semi-open and semi-continuous.

(i1) f is semi-open and almost-continuous.

(iii) f is feebly-open and almost-continuous.

This theorem is proved by using the same method as in [9, Theorem 2', p.384]. Therefore the
proof is omitted.

COROLLARY 2.6. Let f be a mapping of a metrizable separable space X onto a second
category space Y and suppose the sets of the form f~!(y),y € Y are second category spaces. If
any one of the following conditions hold, then X is a second category space.

(i) f is weakly-open and weakly-continuous

(ii) f is weakly-open and #-continuous

(iii) f is weakly-open and almost-continuous

(iv) f is almost-open and almost-continuous

PROOF. Suppose that (i) holds. By the metrizability and separability (actually regularity

and second countability) of X, the proof follows from Theorem 1.23, Theorem 1.12 and the case
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(11) of Theorem 2.5. It is clear that both the case (ii) and the case (iii) imply the case (i) by
Remark 1.9. Finally the proof of the case (iv) follows from case (iii) of this corollary by Remark
1.20.

COROLLARY 2.7. Let f be a mapping of a second countable space X onto an almost-
regular second category space Y and suppose the sets of the form f~(y),y € Y are second
category spaces. If any one of the following conditions hold, then X is a second category space.

(i) f is feebly-open and weakly-continuous.

(i1) f is feebly-open and 6-continuous.

PROOF. Suppose that (i) holds. Since Y is almost-regular, f is feebly-open and almost-
continuous by Theorem 1.11. Consequently X is a second category space by the case (iii) of
Theorem 2.5. The proof for the case (ii) follows from Remark1.9 and the case (i) of this corollary.

PROOF OF THEOREM 2.1. In order to prove that X is a Baire space, it is enough to
show that every nonempty open subset of X is of the second category (also called nonmeager)
relative to X. Let G be an arbitrary nonempty open subset of X. Since f is semi-open , then
f(G) is a semi-open subset in Y. Therefore, there exists a nonempty open subset O of Y, such
that O C f(G) € O. Thus f(G) is a Baire subspace of Y by Theorem 1.25 and Theorem
1.26. Consequently f(G) is a second category subspace in Y. On the other hand, the mapping
fic : G — f(G) defined by f/g(z) = f(z) for all z € G, is semi-open and semi-continuous
by Theorem 1.6 and Theorem 1.7. Furthermore since the sets form f~!(y) are Baire spaces and
(fi6)""(y) = G N f~!(y), then the sets form (f;g)~!(y) are open Baire subspaces of f~!(y).
by Theorem 1.25. Consequently the sets of form (f;g)~!(y) are also Baire subspaces of G by
Remark 1.28. Hence the sets of form (f;c)™!(y) are second category subspaces of G. Therefore G
is a second category subspace in X by the case(i) of Theorem 2.5. Consequently G is a second
category subset relative to X by Theorem 1.27.

PROOF OF THEOREM 2.2. Suppose that (i) holds and let G be an arbitrary nonempty
open subset of X. Since X is metrizable, f is open and almost-continuous by Theorem 1.23
and Theorem 1.12. Hence f(G) is an open Baire subspace of Y by Theorem 1.25. Consequently
f(G) is a second category subspace of Y. Moreover the mapping f/¢ : G — f(G) is also open
and almost continuous by Theorem 1.13. On the other hand, as in the proof of Theorem 2.1,
by repeating the same operations, it can be shown that the sets of form (f;g)~'(y) are second
category subspaces of G. Consequently G is a subspace of the second category in X by the case
(ii) of Theorem 2.5. This shows that G is a second category subset relative to X by Theorem
1.27.

It is clear that both the case (ii) and the case (ii1) imply the case (i) by Remark 1.9. Finally
the proof of the case (iv) follows from case (iii) of this theorem by Remark 1.20.

ACKNOWLEDGMENT. The author express greatful thanks to referees for some valuable

remarks.



INVERSE IMAGE OF BAIRE SPACES 431

REFERENCES

[1] AARTS, J. M. and LUTZER, D.J., Completeness properties designed recognizing Baire
spaces, Dissertationes math. 116(1974) 1-48.

[2] BISWAS, N. , On some mappings in topological spaces, Bull. Calcutta. Math. Soc.
61(1969) 127-135.

[3] ——, On characterizations of semi-continuous function, Atti. Accad. Naz. Lincei. Rend.

Cl. Sci. Fis. Math. Natur. (8) 48(1970) 399-402.

[4] BOURBAKI, N. , Elements of Mathematics General Topology, Volume 2 (Hermann,
Paris, 1966).

[5) CHOQUET, G., Lectures on analysis. Vol I. Benjamin, New York, 1969
(6] DIEUDONNE, J. , Foundations of modern analysis, Academic Press, New York, 1969

[7] CROSLEY, S. G. and HILDEBRAND, S. K. , Semi-closure, The Texas Journal of
Science, Vol. XXII. No 283(1971) 99-112.

[8] FOMIN, S., Extensions of topological spaces, Ann. math. 44(1943) 471-480.

[9] FROLIK, Z. , Remarks concerning the invariance of Baire spaces under mappings, Czech.

Math. J. 11(86) (1961) 381-384.

(10]

, Baire spaces and some Generalizations of complete metric space, Czech. Math. J.

11(86) (1961) 237-248.

[11]] HAWORTH, R. C. and MCCOY, R.A., Baire spaces, Dissertationes. Math. 141(1977)
1-73.

[12) KIM, H.O., Notes on C-compact Spaces and Functionally Compact Spaces, Kyungpook
Math.J., Vol. 10(1970), 75-80.

(13] KROM, M.R., Cartesian product of metric Baire spaces, Proc. Amer. Math. Soc.
42(1974) 588-594.

[14] LEVINE, N., A decomposition of continuity in topological spaces, Amer. Math. Monthly.
68(1961) 44-46.

[15] , semj-open sets and semi-continuity in topological spaces, Amer. Math. Monthly.

70(1963) 36-41.

[16) LONG, P.E. and HERRINGTON, L. L. , Properties of almost-continuous functions;
Bollettino. U. M. L. (4) 10(1974) 336-342.



432 M. GIGEK

[17] NOIRI, T., Between continuity and weak-continuity, Bollettino U.M.I (4)9(1974),647-654.
[18] OXTOBY, J.C., Cartesian product of Baire spaces, Fund. Math. 49(1960/61), 157-166.

[19) ROSE, D.A., Weak opennes and almost opennes, Internat. J. Math and Math. Sci..
7(1984) no.1,35-40.

[20] SIKORKSKI, R., On the cartesian product of metric spaces, Fund.Math.34(1947), 288-
292.

[21] SINGAL, M.K. and SINGAL, A.R. , almost-continuous mappings, Yokohoma. Math.
J. 16(1968) 63-73.

[22] SINGAL, M. K. and ARYA S. P., On almost regular spaces, Glasnik. Mat. Seri. III
4(24) (1969) 89-99.

[23] STEEN, L.A. and SEEBACH, J.A.,Jr., Counterexamples in toloogj, Holt, Rinehart
and Winston, New York, 1970.

(24] NEUBRUNN, T., A note on mappings of Baire space, Math. Slovaca 27(1977) 173-176.



