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ABSTRACT. A theorem ofLorch, Muldoon and Szeg0 states that the sequence

3oJ, k=

is decreasing for a > 1/2, where Jo(t) the Bessel function of the first kind order a and ja,k its kth

positive root. This monotonicity property implies SzegO’s inequality

ot-Jo(t)t
>_ o,

when a > a’ and a’ is the unique solution of fo.2 t-oj(t)dt 0

We give a new and simpler proof of these classical results by expressing the above Bessel function

integral as an integral involving elementary functions.
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1. INTRODUCTION
Let Jo(t) be the Bessei function of the first kind and order a, ja,l,ja,9_, its positive roots in

increasing order and Jo,0 0

In Lorch, Muldoon and SzegO derived, among other things, the following.
THEOREM 1. For a > the sequence of areas

k Jo,k k=

is decreasing.
As it is shown in [1 ], this theorem is a special case of a more general result concerning cylinder

functions and its proof is based on an application of a Sturm-type oscillation theorem (formulated by
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Watson [2, p. 518], sharpened and applied in greater detail by Makai [3]) to a certain linear differential

equation of second order.

In addition, as the authors pointed out in ], Theorem gives another proof of a classical inequality
of SzegO contained in the Notes which he appended to a posthumous paper ofFeldheim [4] in the course

ofpreparing it for publication.

SzegO proved in [4] that

J’’= t-’J, (t)dt > O, k 2, 3 (1.2)

where a is the unique root ofthe transcendental equation

whose numerical value is a’ 0.26938

As indicated by Szeg6, (1.2) in combination with an application of the Sonine imegral (see [4, p.

279] or [2, p. 373]), yield the inequality

Zt-aJa(t)dt > x > c > (1 4)0 for all 0, whq’l t.

SzegO’s proof of (1.2) is rather imricate as it relies on various properties of Bessel functions as well

as of certain idemities involving the Lommel functions.

It should be noted that inequality (1.4) suggests a much stronger inequality involving ultraspherical
polynomials which was recently established in [5].

Over the years, generalizations of (1.4) have been proved by several authors In particular, the

inequality

t-Jo(t)dt > O, x O, a I, (1.5)> < +

was proved by Makai [6] for < a < 1/2 and (c) _< fi/< a + 1, where

’’ ( 6)t-(’) J, (t)dt O.

Askey and Steinig [7] proved (1.5) for 1 < a < for the same range of/. For a , (1.5)
rams out to be a classical inequality for cosine integrals. When a > , (1.5,) holds for <_/ < a + 1

and this follows from a work ofGasper [8], in which an explicit expression ofthe integral in question as a

sum of squares of the Bessel functions with positive coefficients is proved. See also [9] for some more

recent results on positive integrals ofBessel functions.

The purpose of this note is to show that Theorem can be established in a simpler manner than that

in and hence to give a new and more straightforward proofof Szeg0’s inequalities (1.2) and (1.4)
We proceed by observing that Theorem is equivalent to

TREOREM 2. For a > , we define

f(x,a) t-J(t)dt, x > O. (1 7)

(1 8)

Then, the local minima of f(x, a), as a function ofx, form an increasing sequence, i.e.

f(j,9_t, a) < f(ja,2t+2, a), g 1, 2,

and its local maxima form a decreasing sequence, i.e.
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f(3o,9_-l,a) > f(ja,2t+i,a), e 1,2,.... (1.9)

It is well known that the graph of y Jo(t), (a > 1) consists of waves alternately above and
below the axis of t, whose areas form a steadily decreasing sequence, t being positive. This classical
result was proved originally by Cooke in 10] and 11 ]. Cooke’s proof is rather complicated as it depends
on some delicate estimates involving the Lommel functions and several properties ofBessl functions In
[3], Makai proved this result for ]al > in a simpler way using a differential equation approach of

Smrm-Liouville type. A particularly simple proof of Cooke’s Theorem has been devised by Steinig in

[12].
Since the sequence

2o.k+,

]Jo(t)lclt
"2o.k k

is steadily decreasing and for ct > 0, t is a positive decreasing function of t, we have

f f"’+’’<’’+’-lao()l, > (.<,.,<+ lao()l<i

2a.k+l 2o.k+l

ffhich establishes Theorem for all a > 0. It is clear that the case a 0 reduces to Cooke’s result as

well.
In the next section we give a simple proof of Theorem 2 for the range < a < 0 This is, of

course, the interesting case as the critical value a’ for which the SzegO’s inequalities (1.2) and (1 4) are

valid, is contained in this interval.

2. IROOF OF TIEOREM 2 FOR < a < 0

For this proofwe need the following elementary lemma.
LEMMA. Let 0 < # < 1 and

sin
(t)=t(l_t)" for 0<t<l.

Then we have 9’ (t) < 0 for E (0,1). Moreover, 9" (t) < 0 for e (0, 1), when 1/2 </ < 1

PROOF. We observe that

1(1 t)"+’t/= t2 (Tr cos 7r sin 7r t) + 2# sin 7r t.

To prove the negativity of g’ (t), it suffices to show that

1 t
t (TrtcosTrt- sinTrt) + 2sinTrt < 0,

or equivalemly
1 3t

rtctg(Trt) <
1

(2.1)

Now taking into account the familiar formula

1
7rt ctg(Trt) 1 + 2t

t2 k2
k=l

(2.2)

we see that (2.1) is equivalent to
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1Ek >0

which is apparently true for 0 < t < 1. Hence, g’(t) < 0, for 0 < < 1.

Suppose that < # < 1. A routine calculation shows that the negativity of g"(t), for 0 < < 1,
follows from the inequality

7r2(1 t-) 2#[1 + (2# + 1)t2] + 2
(1 -}2)2 (rtctgTrt- 1)- 4#(1 t2)(TrtctgTrt- 1) > 0.t2

In view of (2.2), this is equivalem to

17r2t + (6# + 4 4# 27r2)t2 + 7r 2# 4 4(1 t2)(1 (2# + 1)t2)E k
k=2

> 0. (2 3)

Since

.2 1 3
--1< E k_t < ’ 0<t<l,

k=2

inequality (2.3) follows easily by an elementary computation.
The proof ofthe lemma is complete. El
Now, in order to prove Theorem 2 we observe that the integral in (1.7) that defines the function

f(x, a) coincides with an integral of certain elementary thnctions.

In fact, by Poisson’s integral (cf. [2, p. 48])

fo’Ja(z) (1- t2,-1/2cos,zt,dt, for a >

it follows easily that

o 21-a foX sin(xt)t-J(t)dt r()r(, + 1/2)

forx > Oanda > 1/2.
Since the zeros of Jo(t) are increasing with a [2, p. 508] and

dt

J_(t)= cost, J(t)= - sin},

we have for - <a< 1/2

(-1/2) < jo. <,

In addition, Szeg6 showed in [13] that, for < a < ,
ja,v--j,v-l<r,

v= 1,2,....

v= 1,2,....

(2.4)

(2 5)

Combining this with (2 5) we get

jo.v+ jo. < 2 < j.v+3 J., v= 1, 2, (2.6)

when <a< 1/2
Let

sin(zt)
(z,)

dt

(1- t2)
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Taking imo consideration (2.4) and (2.6) we see that in order to prove (1.8) it suffices to show that

37r
(z, a) (x 27r, a) > 0, for 2gTr + -- < z < 2eTr + 2r, e 1, 2, (2 7)

Similarly, (1.9) can be obtained by showing

(,)- (z- 2,) < 0, for 2zr+<z<2gr+Tr, t?=1,2 (2.8)

It is evident that (2.7) is equivalem to

sin() r
cos(yt)

t(l_t2)-dt>O for 2br+<y<2eTr+vr, e=1,2,...

which, in turn, is equivalent to

fo K(t) eos t clt > O, 2eTr+<y<2err+vr, =1,2,... (2.9)

whe

sn - O<t<y.Ku(t)
t(Y t211/2_o,

We have

UKu(t)costdt Ku((2j 2)r +t)costdt + Ku(2eTr + t)costdt
3=

JO

T(t)costdt Ku((2e+ 1)r t)costdt,
g+l)r-

(2 I0)

where

T(t) E {K((2j- 2)7r + t) K((2j- 1)7r t)
j=l

Ku((2j- 1)Tr + t) + Ku(2jTr t)} + Ku(2eTr + t).

We observe that the function

Atu(t T(t)- K((2e + 1)r- t)

is decreasing for (2e + 1)r y < < , since it has the form

zx(t) Q(t)

where

Qtu(t) Ku(t) +Z {Ku(2jTr + t)+ Ku(2jr- t)}.

By the lemma ofthis section it follows that Qeu(t is a decreasing function of t, therefore

A(t)>A g =0, (e+)-<t<-, e=,.,.... (2.11)

From this it follows that

(t)>0, 0<t<7, e=,,.... (2.12)
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Finally, by (2.10), (2.11) and (2.12) we get

K(t)costdt > A(t)costdt > O,
t+l)’-/

which gives (2.9). By a similar argument we establish (2.8) and complete the proofofTheorem 2. [21

REFERENCES
[1] LORCH, L., MULDOON, M.E. and SZEGO, P, Some monotonicity properties of Bessel

functions, SIAMJ. Math. Anal. 4 (1973), 385-392.

[2] WATSON, G.N., A Treatise on the Theory of Besael Functions, 2nd ed., Cambridge University
Press, 1944.

[3] MAKAI, E., On a monotonic property of certain Sturm-Liouville functions, Acta Math. Acad Sct.
Hungar. 3 (1952), 165-172.

[4] FELDHEIM, E., On the positivity of certain sums of ultraspherical polynomials, J. Analyse Math.
11 (1963), 275-284 (edited with additional notes by G. Szegt), also in G. Szeg0 collected papers
vol. 3, Birkhauser Boston, 1982, 821-830.

[5] BROWN, G., KOUMANDOS, S. and WANG, K-Y., Positivity of basic sums of ultraspherical
polynomials, submitted.

[6] MAKAI, E., An imegral inequality satisfied by Bessel functions, Acta Math. Acad Sct. ttungar. 25
(1974), 387-390.

[7] ASKEY, R. and STEINIG, J., Some positive trigonometric sums, Trans. Amer. Math. Soc. 187
(1974), 295-307.

[8] GASPER, G., Positive integrals ofBessel functions, SIAMJ. Math. Anal. 6 (1975), 868-881.

[9] MISIEWlCZ, J.K. and RICHARDS, D.S.P., Positivity of imegrals of Bessel functions, SlAM J.
Math. Anal. 25--2 (1994), 596-601.

10] COOKE, R.G., Gibbs’ phenomenon in Fourier-Bessel series and integrals, Proc. London Math. Soc.
27 (1927), 171-192.

[11] COOKE, R.G, A monotonic property of Bessel functions, o London Math. Soc. 12 (1937), 180-
185.

[12] STE1NIG, J., On a monotonicity property ofBessel functions, Math. Z. 122 (1971), 363-365.

13] SZEGO, G., Inequalities for the zeros ofLegendre polynomials and related functions, Trans. Amer.
Math. Soc. 39 (1936), 1-17, also in G. Szeg0 collected papers vol. 2, Birldaauser Boston, 1982,
593-610.


