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ABSTRACT. A new Tau method is presented for the two dimensional Poisson equation Comparison
of the results for the test problem u(z, 3/) sin(47rz)sin(47ry) with those computed by Haidvogel and

Zang, using the matrix diagonalization method, and Dang-Vu and Delcarte, using the Chebyshev
collocation method, indicates that our method would be more accurate
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1. INTRODUCTION
Haidvogel and Zang [1] developed a matrix diagonalization method for the solution of the two-

dimensional Poisson equation. This method is efficient but requires a preprocessing calculation of the

eigenvalues and eigenvectors which limits the accuracy of the solution to that of the preprocessing

calculations, especially at large N values

Dang-Vu and Delcarte [2] developed a Chebyshev collocation method for solving the same problem
Their method has the same accuracy as the matrix diagonalization method when N is small and it is more

accurate when N is large In this paper we present a new alternative method for solving

Au(x,y) =u=z +u= f(x,y), x,y (-1,1)
(1 l)

u( -i- 1, y) u(x, -i- I) O.

which is more accurate than the above two methods

2. PRELIMINARIES
In this section we give a basic definition and some facts which we use hereafter

DEFINITION 1. The Legendre polynomial {Lk(x), k 0, 1 are the eigenfunctions of the

singular Sturm-Liouville problem

((1-x2)Lk(x))’+k(k + l)Lk(x)=O, xe[-1,1].

Like other orthogonal polynomials the Legendre polynomials satisfy many relationships perhaps the

most basic one is the orthogonality relation

L,(x)Lm(x)dx (n -[" 0.5)-lnm (2 1)

for n > I and
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1 if n=m
6nr= 0 if nm

Other properties ofLegendre polynomials include the recursion relation

L,+l(X)
2n + 1

xL,(x)
n

n +’----- n + 1 Ln-1 (x) (22)

for n > 1 and the endpoint relation

L,(=kl)-(:J=l)n. (23)

Suppose that f(x) E C2[- 1, 1] and f’"(x) is a piecewise continuous function on [- 1, 1] Then
for

d
f(:) f(:),

we have that

,converges uniformly on [- 1, 1] where

( 1) [p(p+l)-n(n+l)]f, (24)S)= ,+

and

A (n + 0.5) f(x)L,(x)dx.

The coefficients also satisfy the recursion relation

(q)
-1 .tn+l f(g-1), n > 1 q 1 2. (2 5)2n-1 2n+3

For more details, see Schwarz [3]

3. LEGENDRE-TAU METHOD FOR SOLVING
TWO-DIMENSIONAL POISSON EQUATION
The basic topics of this section involve the Legendre-Tau method to discretize a class of linear

boundary value problems of the form of Problem (1 1). To explain the total procedure both analytic and
numerical results are presented

Referring to the boundary value problem (1.1) approximate- u and f in terms of Legendre
polynomials as

N

ug(x,y) E a,(x)L.(y),
k:0

and

N

I(, ) (:)L(u).
k=O

For the approximate solution UN, the residual is given by

Rz(,) zX,z(, u)- f(, u). (31)
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Thus, the residual can be written as

N

k=0

where a(k2) is given in (2.4) and a(x) is the second derivative of ak(X) with respect to x As in a typical
Galerkin scheme we generate (N 1) second order ordinary differential equations by orthogonalizing the

residual with respect to the basis functions Lk (y)

(RN,Lk(y)) RgLk(y)dy 0, for k 0" N- 2.

This leads to the elementwise equation

)() + :() b(). (33)

Since

,(2)() -_()+)()+ for k=2-N,

$o

ak rk(bk-2 8ka:_2) + (bk a) 4- wk(bk+2 ak+2’’ for k=2"N,

1 1 -4k-4
rk= (2k-3)(2k+l)’ wk= (2k+5)(2k+3)’ s= (2k+l)2(2k+3)

rk=0 if k>N+2, sk=0 if k>N and w =0 if k>N-2.

For simplicity, let us assume that N is even positive integer. Let D d2 be the differential

operator Since

N

UlV(X, :t: 1) 0 + 1)ka(x),
k=0

SO

ao(z)+_() + + u() 0

and

a (z) + a3(z) + + au_ (z) 0.

Thus, we have the following two systems

(Ae + D2Be)a, 1: (34)

and

(Ao + D2Bo)ao Ro

where a (ao, a2, ,aN)T, aO (al, aS, ,aN-l)T

1 1 1 1
1 0 0

0 1 0
i0 0

0 0 0
?’2 82 W2
0 r 8

0 0 0
0 0 0
0 0 0

0 0 0 0 O"
0 0 0 0 0

w4 0 0 0 0

0 rN-4 8N-4 WN-4 0
0 0 rN_2 8N_ 0
0 0 0 rv 0

(35)
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Ao

1 1 1
0 1 0 0

0 0 1 0
0 0 0

0 0 0
r3 83 w3
0 % s5

0 0 0 0
0 0 0 0
0 0 0 0

0
0

0 0 0 0
0 0 0 0
0 0 0 0

TN-5 8N-5 WN-5
0 rN-5 8N-3
0 0 rv_

0
0
0

0
r2bo + 82b2 + w2b4
r462 + 8464 + w466

rg-4bg-6 + 8N-4bN-4 + WN-4bN-2
TN-2bN-4 + 8N-2bN-2

rNbN-2

0
r3bl + 83b3 + w365
rsb3 + ssb5 + wsb7

rg-sbg-7 + 8N-sbN-7 + Wg-sbg-7
rg-3bg-5 + Sg-3bg-3

rg-lbN-3

Since {Lk(y), k 0, 1, N} is linearly independent over N and UN( :t: 1, y) 0, we see that

a_(+/-l)--O and a__o(:kl)--_OQ. (3 6)

From equations (3 4)-(3.6), we see that the two systems are similar. For this reason, we will discuss the

solution ofthe following system

(A, + D2B)% R, a_( 5= 1) _0. (3 7)

Multiply both sides ofthe differential equation (3.7) by

to get

1 -1 -1 -1 -1
0 1 0 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

(I + D2Ce)a_ qe, a_( 5= 1) 0. (3 8)

Let X and R be two matrices of sizes (N/2 + 1) x (N/2 + 1) such that X,j and Rv are the coefficients

ofxa-1 in the th component of ae and qe respectively. Let

q+=[1 1 1] and q-= [1 -1 1 -1 (-1)/2]

be 1 x (N/2 + 1) matrices Then system (3 8) can be written as

q+ X=
q

(3 9)

Multiply both sides ofthe differential equation (3.9) by

[I+D2CTe qT+ qZ_]
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tO get

(I + D2(Ce +cT + D4C[C +qT.q. +qr_q_)X= (I + D2cT )R.

TItEOREM 3.1. The matrix G I + q.Tq+ + q_Tq_ is a nonsingular matrix

PROOF. Let A be any eigenvalue of the matrix G associated with the eigenvector x such that

xTx 1

A AZTx AT,TGx

xTx + (xq+x)T(xq+x) + (xq_x)T(xq_x)
_

1.

Then, the smallest eigenvalue ofG is at least 1, which implies that G is nonsingular matrix

Now, multiply both sides ofthe differential equation (3 10) by Q (I + qT+q+ + qT_q_ )-1 to get

It is easy to see that

(I + D2Q(CT Ce) + D’QCT Ce)X Q(I + D2C[)R.

(3 10)

Q (I- aqT+q+)(I- qT_q_(I- aqTq+)),

1 1
cz

I + q+ qT+ I + q_ (I qT. q+ )qT_

For more details, see Hager [4]
Since each component of Q(I + D2C[)R is a polynomial of degree at most N/2, so we will

approximate the solution of equation (3.11) by

!N/4
X- (- 1)’S’(Q + D2C[)R (3 12)

t--0

where S D2Q(CT + Ce) + D’QC[C and N/4] is the largest integer less than or equal N/4 Let
H be the transition matrix from the basis ,1- {Lo(x),LI(x),...,LIN/4].I} to the basis

2 {1,x, ...,xIN/4]+} for the space

P[N/4|+I {f: f is a polynomial of degree _< N/4] / 1}

with usual addition and scaler multiplication Let F be the matrix of the differential operator

D :P|g/4|+l P|lv/4]-i using the standard basis. Thus, the algorithm for computing X is given as

follows

ALGORITHM 3.1.

INPUT: The matrices R, C, Q, H and F
OUTPUT: The matrix X.
STEP Compute R rRT R_ Q(R + c[RT
STEP 2 X R2.
STEP 3 For 1 [N/2] + 1, do steps 4-6.

STEP 4 R3 FR; R4 F2/
SVEP 5 R Q((C[ + C)P + C[CRr ).
STEP 6 X X + 1)’ R2.
STEP 7 Stop.

4. NUMERICAL RESULT
In this section, we give two experimental examples to show how Algorithm (3.1) works nicely

Also, comparison of the results for the test problem u(x, y) sin(47rx)sin(47ry) with those computed by

Haidvogel and Zang, using the matrix diagonalization method, and Dang-Vu and Delcarte, using the

Chebyshev collocation method will be done

(3 ll)
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All the calculations are realized using the 486 IBM computer Programs are written in double

precision
EXAMPLE 4.1.

-1<y<1

Consider the following boundary value problem for -1 < x < 1 and

uzz(x, y) + uuu(x, y) 32rr sin(47rx)sin(4rry)
u( 5= l,y) O u(x, 5=1).

The exact solution is u(x, y) sin(47rx)sin(47ry) We will study the relation between the number of

terms in the approximation solution N and the error in the approximation eN This relation is given in

Table (1)

Table (1)
Maximum Absolute Error e as a function ofN

N e

16 3.23 10-2

24 6.87 x 10-6

32 4.31 X 10-11

40 1.0 10-16

EXAMPLE 4.2. Consider the following boundary value problem for 0 < x < 1 and 0 < y < 1

,(,) +(,) f(, )
u(1, y) u(0, y) 0 u(x, O) u(x, 1)

where f(x,y) 32[(x x)(x + y2 1) + (y2 y)(y + x 1)]e2x+2u-2
The exact solution is u(x, y) 16(x x)(y y)e2-2u-2 We will study the relation between the

number of terms in the approximation solution N and the error in the approximation eN This relation is

given in Table (2) In this case, first we will use the following transformation to the square [0,1] [0,1]
into the square [- 1,1] [- 1, 1]

z=2x-1, w=2y-1.

Table (2)
Maximum Absolute Error e as a function ofN

N e

10 1.01 x 10-9

12 5.16 10-12

16 1.04 x 10-15

From Table (1) and Table (2), we see that our method is an accurate method Compared with the

Haidvogel-Zang method and Dang-Delcarte method our method should generate more accurate results at

large N values
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