RESEARCH NOTES

NOTES ON (α,β) -DERIVATIONS

NEŞET AYDIN

Adnan Menderes University Faculty of Arts and Sciences Department of Mathematics 0910 Aydin, TURKEY

(Received December 18, 1995 and in revised form April 2, 1996)

ABSTRACT. Let R be a prime ring of characteristic not 2, U a nonzero ideal of R and $0 \neq d$ a (α, β) -derivation of R where α and β are automorphisms of R. i) [d(U), a] = 0 then $a \in Z$ ii) For a, $b \in R$, the following conditions are equivalent (I) $\alpha(a)d(x) = d(x)\beta(b)$, for all $x \in U$ (II) Either $\alpha(a) = \beta(b) \in C_R(d(U))$ or $C_R(a) = C_R(b) = R'$ and a[a, x] = [a, x]b (or a[b, x] = [b, x]b) for all $x \in U$ Let R be a 2-torsion free semiprime ring and U be a nonzero ideal of R iii) Let d be a (α, β) -derivation of R and g be a (γ, δ) -derivation of R. Suppose that dg is a $(\alpha\gamma, \beta\delta)$ -derivation and g commutes both γ and δ then $g(x)U\alpha^{-1}d(y) = 0$, for all $x, y \in U$. iv) Let Ann(U) = 0 and d be an (α, β) -derivation of R and g be a (γ, δ) -derivation of R such that g commutes both γ and δ If for all $x, y \in U$, $\beta^{-1}(d(x))Ug(y) = 0 = g(x)U\alpha^{-1}(d(y))$ then dg is a $(\alpha\gamma, \beta\delta)$ -derivation on R

KEY WORDS AND PHRASES: Derivation, semiprime ring, prime ring, commutative 1991 AMS SUBJECT CLASSIFICATION CODES: 16A15, 16A70

1. INTRODUCTION

Let R be a ring and X be a subset of R. Let $Ann_{\tau}(X) = \{a \in R \mid xa = 0 \text{ all } x \in X\}$ and $Ann_{\ell}(X) = \{a \in R \mid ax = 0 \text{ all } x \in X\}$ be the right and left annihilators, respectively, of the subset X of R If R is a semiprime ring then the left and right and two-sided annihilators of an ideal X coincide It will be denoted by Ann(X). Let U be an ideal of R Note that if σ is an automorphism of R and Ann(U) = 0 then $Ann(\sigma(U)) = 0$. Let R be a ring and α , β be two automorphisms of R An additive mapping $d: R \to R$ is called an (α, β) -derivation if $d(xy) = \alpha(x)d(y) + d(x)\beta(y)$ holds for all pairs x, $y \in R$

Throughout this note R will represent an associative ring Let $R' = \{x \in R \mid d(x) = 0\}$ The centralizer of a subset A of R is $C_R(A) = \{y \in R \mid ay = ya, \forall a \in A\}$ $C_R(R) = Z$, the center of R

There are two motivations for this research Herstein [1] has proved Let R be a prime ring of characteristic not 2, and $0 \neq d$ be a derivation of R Then any element $a \in R$ satisfying ad(x) = d(x)a for all $x \in R$, should be central In [2], Daif has proved the following theorem Let R be a prime ring and $a, b \in R$ Then the following conditions are equivalent

(i) $ad(x) = d(x)b, \forall x \in R$

(ii) Either $a = b \in C_R(d(R))$ or $C_R(a) = C_R(b) = R'$ and a[a, x] = [a, x]b (or a[b, x] = [b, x]b) for all $x \in R$ In the first part of this note we generalized these two theorems for an ideal U and (α, β) -derivation of R

In the second part, Bresar and Vukman [3] give some results concerning two derivations in semiprime rings We will generalize some of these results by taking an ideal of R instead of R and extend to more general mappings As a result of this, we will give a generalization of a well-known result of Posner which states that if R is a prime ring of characteristic not 2 and d, g are nonzero derivation of R then dg cannot be a derivation

2. RESULTS

LEMMA 1. Let R be a prime ring of characteristics not 2, $(0) \neq U$ an ideal of $R, 0 \neq d : R \rightarrow R$ a (α, β) -derivation such that $\alpha d = d\alpha$, $d\beta = \beta d$ and $a \in R$. If $a \in C_R(d(U))$ then $a \in Z$

PROOF. Since $a \in C_R(d(U))$, ad(x) = d(x)a for all $x \in U$ Replacing x by $xy, y \in U$, we obtain $a\alpha(x)d(y) + ad(x)\beta(y) = \alpha(x)d(y)a + d(x)\beta(y)a$. Using hypothesis we have

$$d(x)[a,\beta(y)] = [\alpha(x),a]d(y)$$

Taking $yr, r \in R$, instead of y, we obtain

$$d(x)\beta(y)[a,\beta(r)] = [\alpha(x),a]\alpha(y)d(r)$$
 for all $x,y \in U, r \in R$.

If we replace r by $\beta^{-1}(d(z)), z \in U$, we get $d(x)\beta(y)[a, d(z)] = [\alpha(x), a]\alpha(y)\beta^{-1}(d^2(z))$. Since $a \in C_R(d(U))$ we have $[\alpha(x), a]\alpha(y)\beta^{-1}(d^2(z)) = 0$ for all $x, y, z \in U$ Since $\alpha(U)$ is an ideal of R and R is prime we get $a \in Z$ or $d^2(U) = 0$. If $d^2(U) = 0$ then $0 = d^2(xy) = \alpha^2(x)d^2(y) + 2d(\alpha(x))d(\beta(y))$ and so $d(\alpha(x))d(\beta(y)) = 0$. By [4, Lemma 3] we have a contradiction Thus $a \in Z$.

THEOREM 1. Let R be a prime ring of characteristic not 2, $0 \neq d : R \rightarrow R$ a (α, β) -derivation, $(0) \neq U$ and ideal of R and $a, b \in R$. Then the following conditions are equivalent

(I) $\alpha(a)d(x) = d(x)\beta(b)$, for all $x \in U$.

(II) Either $\beta(b) = \alpha(a) \in C_R(d(U))$ or $C_R(a) = C_R(b) = R'$ and a[a,x] = [a,x]b (or a[b,c] = [b,x]b) for all $x \in U$.

PROOF. (I) \Rightarrow (II) If $a \in C_R(d(U))$ then by Lemma 1 we get $\alpha(a) \in Z$. (I) gives $d(x)(\beta(b) - \alpha(a)) = 0$, for all $x \in U$. By [4, Lemma 3] it implies that $\beta(b) = \alpha(a)$. Similarly, if $\beta(b) \in C_R(d(U))$ then $\beta(b) = \alpha(a)$.

We assume henceforth that neither $\alpha(a)$ nor $\beta(b)$ in $C_R(d(U))$. Let in (I) x be rx, where $r \in R$, and using (I), we have $\alpha(a)\alpha(r)d(x) + \alpha(a)d(r)\beta(x) = \alpha(r)d(x)\beta(b) + d(r)\beta(x)\beta(b)$ and so

$$\alpha([a,r])d(x) = d(r)\beta(xb) - \alpha(a)d(r)\beta(x).$$
(2.1)

Taking y instead of r where $y \in U$, in (2.1) and using (I) we obtain

$$\alpha([a,y])d(x) = d(y)\beta([x,b]), \quad \text{for all} \quad x, y \in U.$$
(2.2)

Now if d(x) = 0 then (2.2) gives us $d(y)\beta([x,b]) = 0$ for all $y \in U$ By [4, Lemma 3], we get $x \in C_R(b)$. Conversely, if $x \in C_R(b)$, then (2.2) gives us $\alpha([y,a])d(x) = 0$. Since by [4, Lemma 3] $a \notin Z$, we have d(x) = 0 Therefore $C_R(b) = R'$. Similarly, we can show that $C_R(a) = R'$. In particular, d(a) = d(b) = 0 and ab = ba.

Replace r by $yb, y \in U$, in (2.1) we have $\alpha([a, y])\alpha(b)d(x) = d(y)\beta(b)(xb) - \alpha(a)d(y)\beta(bx) = \alpha(a)d(y)\beta(bx) = \alpha(a)d(y)\beta(xb) - \alpha(a)d(y)\beta(bx) = \alpha(a)d(y)\beta([x, b])$ and using (2.2) we get $\alpha([a, y])\alpha(b)d(x) = \alpha(a)\alpha([a, y])d(x)$ and so

$$\alpha([a, y]b - a[a, y])d(x) = 0$$
 for all $x, y \in U$.

By [4, Lemma 3] we obtain

$$a[a, y] = [a, y]b$$
 for all $y \in U$.

Furthermore, replacing x by ax in (2.2) and using (2.2) and hypothesis we also have a[b, x] = [b, x]b

(II) \Rightarrow (I) If $\alpha(a) = \beta(b) \in C_R(d(U))$ it is obviously $\alpha(a)d(x) = d(x)\beta(b)$ for all $x \in U$ Therefore it suffices to show that if $C_R(a) = C_R(b) = R'$ and a[a, x] = [a, x]b for all $x \in U$ then $\alpha(a)d(x) = d(x)\beta(b)$ for all $x \in U$.

Since d(a) = d(b) = 0, ab = ba, [a, ax - xb] = a[a, x] - [a, x]b = 0 It gives $ax - xb \in R'$ and so $0 = d(ax - xb) = \alpha(a)d(x) - d(x)\beta(b)$. This proves the theorem

For the second part we begin with

LEMMA 2 [3, Lemma 1]. Let R be a 2-torsion free semiprime ring and a, b the elements of RThen the following conditions are equivalent

(i) axb = 0 for all $x \in R$

(ii) bxa = 0 for all $x \in R$

(iii) axb + bxa = 0 for all $x \in R$

If one of these conditions is fulfilled then ab = ba = 0 too.

LEMMA 3. Let R be a semiprime ring and U a nonzero ideal of R such that Ann(U) = 0Let d be an (α, β) -derivation of R and g be a (γ, δ) -derivation of R. If d(U)Ug(U) = 0 then d(R)Ug(R) = 0.

PROOF. For all $x, y, z \in U$, d(x)yg(z) = 0 Replace x by $xs, s \in R$ we have $0 = d(xs)yg(z) = \alpha(x)d(s)yg(z) + d(x)\beta(s)yg(z)$ Since $\beta(s)y \in U$, the last equation implies that $\alpha(x)d(s)yg(z) = 0$, for all $x, y, z \in U$ and $s \in R$ Taking tz instead of z, where $t \in R$, we have $0 = \alpha(x)d(s)y\gamma(t)g(z) + \alpha(x)d(s)yg(t)\delta(z)$ Since $y\gamma(t) \in U$, it gives $\alpha(x)d(s)yg(t)\delta(z) = 0$ for all $x, y, z \in U$ and $s, t \in R$ Therefore $d(s)yg(t)\delta(z) \in Ann(\alpha(U)) = 0$. Thus we get $d(s)yg(t)\delta(z) = 0$ for all $y, z \in U$ and $s, t \in R$ Hence $d(s)yg(t) \in Ann(\delta(U)) = 0$. As a result of this, it implies that d(R)Ug(R) = 0

LEMMA 4. Let R be a semiprime ring and U be a nonzero ideal of R such that Ann(U) = 0. Let $a, b \in R$ be such that aUb = 0 then aRb = 0.

PROOF. For all $x \in U$ 0 = axb. Replace x by tbxrat, where $t, r \in r$ we have atbxratbx = 0Since R is semiprime ring, this implies that atbU = 0 for all $t \in R$. Thus $atb \in Ann(U) = 0$ we get aRb = 0

THEOREM 2. Let R be a 2-torsion free semiprime ring and U be a nonzero ideal of R with Ann(U) = 0. Let d be a (α, β) -derivation of R and g be a (γ, δ) -derivation of R. Suppose that dg is a $(\alpha\gamma, \beta\delta)$ -derivation and g commutes both γ and δ . Then $g(x)U\alpha^{-1}d(y) = 0$, for all $x, y \in U$.

PROOF. Since g commutes both γ and δ , from the first par to the proof of [5, Lemma 1] there is no loss of generality in assuming $\beta = 1$ and $\delta = 1$ For all $x, y \in U$, $dg(xy) = d(\gamma(x)g(y) + g(x)y) = \alpha\gamma(x)dg(y) + d(\gamma(x))g(y) + \alpha(g(x))d(y) + dg(x)y$. On the other hand, since dg is an $(\alpha\gamma, 1)$ derivation we have $dg(xy) = \alpha\gamma(x)dg(y) + dg(x)y$. Comparing the two expressions so obtained for dg(xy), we see that

$$d(\gamma(x))g(y) + \alpha(g(x))d(y) = 0 \quad \text{for all} \quad x, y \in U.$$
(2.3)

Replacing y by yz where $z \in R$ in (2.3) we obtain $0 = d(\gamma(x))g(yz) + \alpha(g(x))d(yz) = d(\gamma(x))\gamma(y)g(z) + d(\gamma(x))g(y)z + \alpha(g(x))\alpha(y)d(z) + \alpha(g(x))d(y)z = \{d(\gamma(x))g(y) + \alpha(g(x))d(y)\}z + d(\gamma(x))\gamma(y)g(z) + \alpha(g(x))\alpha(y)d(z)$. This relation reduces to

$$d(\gamma(x))\gamma(y)g(z) + \alpha(g(x))\alpha(y)d(z) = 0 \quad \text{for all} \quad x, y \in U, z \in R.$$
(2.4)

Replace y by $yg(t), t \in U$ and take $z \in U$ we have $d(\gamma(x))\gamma(y)\gamma(g(t))g(z) + \alpha(g(x))\alpha(y)\alpha(g(t))d(z) = 0$. Considering this relation (2.4) and (2.3) we obtain $d(\gamma(x))\gamma(y)\gamma(g(t))g(z) = -\alpha(g(x))\alpha(y)d(\gamma(t))g(z) = \alpha(g(x))\alpha(y)\alpha(g(t))d(z)$ for all $x, y, z \in U$. Comparing the last two relations we get $2\alpha(g(x))\alpha(y)\alpha(g(t))d(z) = 0$. Since R is 2-torsion free, it gives

$$g(x)yg(t)\alpha^{-1}d(z) = 0$$
 for all $x, y, z, t \in U$

Replacing t by $tu, u \in U$ it follows $0 = g(x)y\gamma(t)g(u)\alpha^{-1}(d(z) + g(x)yg(t)u\alpha^{-1}(d(z))$ Since $y\gamma(t) \in U$ this relation reduces to $g(x)Ug(t)u\alpha^{-1}(d(z)) = 0$ for all $x, t, u, z \in U$ By Lemma 4 we have for all $x, t, u, z \in U, g(x)Rg(t)u\alpha^{-1}(d(z)) = 0$. In particular $g(x)u\alpha^{-1}(d(z))Rg(x)u\alpha^{-1}(d(z)) = 0$ for all $x, u, z \in U$. Since R is semiprime we obtain $g(x)U\alpha^{-1}(d(z)) = 0$ for all $x, z \in U$.

COROLLARY. Let R be a prime ring of characteristic not 2, d be an (α, β) -derivation of R and g be a (γ, δ) -derivation of R such that g commutes both γ and δ If the composition dg is a $(\alpha\gamma, \beta\delta)$ -derivation then d = 0 or g = 0.

THEOREM 3. Let R be a 2-torsion free semiprime ring and U be a nonzero ideal of R such that Ann(U) = 0. Let d be a (α, β) -derivation of R and g be a (γ, δ) -derivation of R such that g commutes both γ and δ . If for all $x, y \in U, \beta^{-1}(d(x))Ug(y) = 0 = g(x)U\alpha^{-1}(d(y))$ then dg is a $(\alpha\gamma, \beta\delta)$ -derivation on R

PROOF. From Lemma 3 and Lemma 4, we get $\beta^{-1}(d(x))yg(z) = 0 = g(x)y\alpha^{-1}(d(z))$ for all $x, y, z \in R$ On the other hand, since $\beta^{-1}(d(x))yg(z) = 0$ for all $x, y, z \in R$ and since γ is an automorphism of R we obtain $d(\gamma(x))\beta(y)\beta(g(z)) = 0$ for all $x, y, z \in R$. Since R is a semiprime ring, by Lemma 2 we get $d(\gamma(x))\beta(g(z)) = 0$ for all $x, z \in R$. Similarly from $g(x)U\alpha^{-1}d(y) = 0$, we get $\alpha(g(x))d(\delta(y)) = 0$ Therefore dg is an $(\alpha\gamma, \beta\delta)$ -derivation on R

REFERENCES

- [1] HERSTEIN, I.N., A note on derivations, Canad. Math. Bull. 22 (1979), 509-511.
- [2] DAIF, M.N, A prime ring satisfying a condition for derivations, Bull. Cal. Math. Soc. 78 (1986), 303-304.
- [3] BRESAR, M. and VUKMAN, J., Orthogonal derivation and extension of a theorem of Posner, Radovi Matematicki 5 (1989), 237-246
- [4] AYDIN, N. and KAYA, K., Some generalization in prime ring with (σ, τ) -derivation, Doga-Tr. J. of Math. 16 (1992), 169-176.
- [5] BRESAR, M, On the compositions of (α, β)-derivations of rings, and applications to von Neumann algebras, Acta Sci. Math. 56 (1992), 369-375.
- [6] POSNER, E.C., Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100