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ABSTRACT. Using the Liapunov function method, the existence of almost periodic solutions of a
scalar differential equation is discussed The results for the scalar differential equation are then applied to
prove the existence and stability of almost periodic solutions of Abel differential equations We obtain
several interesting results which improve the results due to Chongyou [1] and Dongpin [2]
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1. INTRODUCTION
Many results have been proved for the existence of periodic solutions for the Abel differential
equation

Z(t) = a(t)z® + b(t)z* + c(t)z +d(2). an

However, attention is hardly given to prove results on the existence of almost periodic solutions of (1 1)

The main purpose of this paper is to investigate the existence and stability of almost periodic solutions of
the Abel equation (1.1). First, we introduce the concept of characteristic function of equation (1 1) and
point out that there are relations between the characteristic function and the existence of almost periodic
solutions of (1.1) In section 2, we use the Liapunov function method to prove a general theorem on
almost periodic solutions of a scalar differential equation. This theorem extends the results of Fink 3],
and can be used to simplify the proof of some results of Fink [3]. In section 3, the above general theerem
is applied to investigate the existence and stability of almost periodic solutions of the Abel differential
equations. We also obtain some interesting results which improve the results of Chongyou [1] and
Dongpin [2]

2. ALMOST PERIODIC SOLUTIONS FOR SCALAR EQUATIONS
We consider a general scalar differential equation

z'(t) = f(t,z) 3))

where f: R x R — R, is a uniformly almost periodic function in ¢ with respect to z € R For any
Liapunov function V (¢, z) defined on R x R, we define
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Vay (o) =T 3 (V(t+h,z +hit2) = V(5,2)).
If z(¢) is a solution of equation (2 1), we define
Vin(t(0) =T 3 {V(E+h,2(t+h) = V6 z().

It is well known that, if V (¢, z) satisfies the Lipschitz condition locally, then, we have
Vit z@) = Vo (t.2).

For equation (2.1), we have the following general theorem which improves the results of Fink [4]
We follow Fink [4] to prove the following general theorem

THEOREM 2.1. Suppose ¢(t) is a bounded solution of equation (2 1) on R, and there exist almost
periodic functions a(t), 8(¢) such that

at) <¢(t) < B(t), teR.

If there is a uniformly continuous Liapunov function V (¢, z) satisfying

@) a(lz]) < V(t,x) < b(|z|), where a(r),b(r) are continuous and increasing functions with
a(0) = b(0) = 0,

(i) Vet z(t) — ¢(t) <0, for a(t) < z(t) < B(t,) t € R, then, equation (2 1) has a umique
almost periodic solution z(t) satisfying the inequality

a(t) < z(t) < B(t)

with mod(z) C mod(e, S, f) and z(t) is uniformly stable.

Note that Theorem 12.8 of Fink [4] can be obtained from Theorem 2.1

THEOREM 2.2. Suppose f(,z) is a decreasing function in z If equation (2 1) admits baunded
solutions, equation (2 1) has an almost periodic solution z(t) with mod(z) C mod(f)

PROOF. Suppose ¢(t) is a bounded solution of (2.1) Let a =¢i3£ o(t), B= f;lg ¢(t) Taking a
Liapunov function V (t,z) = (1/2x?), we have the following:

Van(tz@t) - ¢1) = (=) - o@0)f(t,2(t) - f(t,6(t)] <0,  for a<z(t)<B.

All conditions of Theorem 2.1 are satisfied, so equation (2 1) possesses an almost periodic solution Z(t)
with mod(Z) C mod(f)

LEMMA 2.1. Suppose conditions of Theorem 2.1 are satisfied The existence of a uniformly
continuous Liapunov function satisfying conditions (i), (ii) of Theorem 2 1 are inherited by the hull of
equation (2.1).

Proof of this lemma is almost the same as the one in Fink [4], so we omit it.

PROOF OF THEOREM 2.1. For sequence a = {a,}, and almost periodic function f(t), we
denote the limit lim f(t +a,) by T,f. Let a =:2}{ #(t), b =sup ¢(t) and construct functions

n—oo - teR-
&(t) = max(a(t), a), B(t) = min(5(t),b), then
a(t) < &(t) < $(t) < B(t) < B(t), for teR™.
Now, we shall prove that equation (2.1) has and only has a solution ¢(t) such that
a(t) < ¢(t) <Bt), teR".
Suppose equation (2 1) has another solution ¢(t) such that
a(t) <y(t) < Bt), teR.
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Without loss of generality, one may assume ¥(0) > ¢(0), then (t) > ¢(t) for t € R  Since
b =sup ¢(t), there exists a sequence {t.} such that t, — ¢ as n — oo (¢ may be — oo) and
teR-

lim ¢(t,) = b Since

#(t) <Y)<b, teR,
we have

B(ta) < ¥(tn) < b.
We obtain lim ¢(t,) = b Hence
Jim (W(ta) = 9(t)) = 0.
On the other hand, by (i), we have
a(|p(tn) = (tn)l) < V(tn, Y(ta) — d(ta)) < b(1%(ta) — B(ta)l),

hence

Jm V(ta, w(tn) = 9(t2)) = 0.

Since
V@ ¥() - ¢(t) <0,
V(t,¥(t) — ¢(t)) is bounded and decreasing in ¢, which implies that the limit
lim V¢, 2(2) — 4(t))

exists It follows from above that
nlin;o V(tn, z(tn) — ¢(t,)) = 0,

therefore,
lim V(2,4 (t) ~ ¢(t1)) = 0.

On the other hand, V(¢,%(t) — ¢(¢)) > 0 and is decreasing in ¢, hence
and ¥(t) = ¢(t) for t; <t <0 Since equation (2.1) has a unique solution with the initial value,
Y(t) = ¢(t), t € R So, we prove equation (2 1) has a unique solution ¢(t) satisfying
a(t) < ¢(t) < Bt), teR™.
For given sequences o = {a,}, and 8= {B,}, since &(t), B(t), f(t,z) are almost periodic,
without loss of generality, we may assume that
Ta+ﬂf = TaTﬁf =9
Torpa=T,Tpa=a
Ta+ﬁ .B = TQTﬂE =b
uniformly in ¢ € R By the same process as above and Lemma 2 1, we can show that equation
Z'(t) = g(t, ) 22
admits a unique solution z(t) satisfying

a(t) < z(t) < b(t), teR.
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Without loss of generality, we consider that T, 3¢ and T,Tz¢ are solutions of equation (2 2) It is easy

to verify that
a(t) < To.pp < b(t), teR
a(t) < T, Tpp < b(t), teR
hence, T, 3¢ = ToT¢, because equation (2 2) has a unique solution z(t) satisfying

a(t) < z(t) < b().

This implies that ¢(¢) is almost periodic with mod(¢) C mod(f, «, B) by making reference to Fink [3]

This completes the proof of Theorem 2 1
3. ALMOST PERIODIC SOLUTIONS OF ABEL'S EQUATIONS

For the Abel differential equation (11), we define F(t,z) = 3a(t)z? + 2b(t)z +c(t) as a

characteristic function of equation (1.1).

Now, we investigate the existence of almost periodic solutions of the Abel differential equation (1 1)

for the following cases
Case 1 b?(t) —3a(t)-c(t) <0, and Case2. b%(t) —3a(t) c(t)>0
For Case 1, we have the following theorem

THEOREM 3.1. Let a(t), b(t), c(t) and d(t) € AP(R) = {f(£)|f(t) is almost periodic in

t € R} Ifsup (b%(t) — 3a(t) - c(t)) < 0, a(t) # 0, then, the Abel differential equation
teR

z'(t) = a(t)z® + b(t)z? + c(t)z + d(t)

admits a unique uniformly asymptotically stable and almost periodic solution z(t) with mod(z) C

mod(a, b, ¢, d).
PROOF. We assume a(t) < 0, t € R, otherwise, lett = — 7 Since

sug [bz(t) - 3a(t)c(t)] <0

inf (3a(t)e(t) - 4°(t))

3sup |a(t)]
teR

F(t,z) = 3a(t)z? + 2b(t)z + c(t) < — =:—-mg
where mg > 0 We take a Liapunov function V(t, z,y) = % (z - y)z, and consider equations
z'(t) = a(t)z® + b(t)z? + c(t)z + d(2),
Y (1) = at)y® + bt} + c(t)y +d(2),
then
Vit z(t),y(t) = (@) —y(#)* - F(t,z(t) +6(z(t) — y(1)))
< —mo(z(t) - y(®))*.

(ERY)

It follows from Theorem 1 in Weiyao [6] that the Abel differential equation (1 1) admits a unique almost

periodic solution z(t) which is uniformly asymptotically stable with mod(z) C mod(a,b,c,d)

completes the proof

This

If condition of Theorem 3.1 sup (b%(t) — 3a(t) - c(t)) < 0 is weakened i e. b*(t) — 3a(t) - c(t) < 0,
teR

then, we have

THEOREM 3.2. Suppose a(t), b(t), c(t) and d(t) € AP(R). If b*(t) — 3a(t) - c(t) < 0 and
tiglt; la(t)| # 0, then the Abel differential equation (1.1) has an almost periodic solution ¢(t) with

mod(¢) C mod(a,b,c,d)



ALMOST PERIODIC SOLUTIONS FOR ABEL EQUATIONS 731

PROOF. Since tlg}f; ja(t)| # 0, without loss of generality, we assume that supa(t) <0 We can
teR

find a sufficient large constant M > 0 such that

hence, the Abel differential equation (1 1) has a solution @(t) satisfying
-M< ) <M, t=0

Therefore, it has a solution ¢(t) satisfying
-M<¢(t) <M, teR.

Taking a Liapunov function V(t,z) = }z?, and noting b*(t) — 3a(t) - c(t) < 0 and a(t) <0, we
compute as Theorem 3.1 that

Vanltz(t) - ¢t) <0 for —M<z(t)<M

It follows from Theorem 2 1 that the Abel differential equation (1.1) has an almost periodic solution ¢(t)
with mod(¢) C mod(a, b, c,d). This completes the proof of Theorem 3.2

Case 2. b%(t) —3a(t)-c(t) >0

We have the following results

THEOREM 3.3. Suppose a(t), b(t), c(t) and d(t) € AP(R), and b%(t) — 3a(t) - c(t) > 0 and
sup a(t) < 0. If

teR

® 77a td> 5 3

2b% — 9abe + (262 — 6ac)/b? — 3ac d ( b+ VR 3ac>
a

then, the Abel differential equation (1 1) admits almost periodic solution @(t) with mod(¢) C
mod(a, b, c,d), and

L =) = V) —3a(®) <(t)

® = 3a(t) :

If

2b% — 9abc + (6ac — 8b2)\/b% — 3ac el ( — b+ /b2 —3ac)

(it 27a° at 3a

then, Abel differential equation (1 1) has an almost periodic solution z(t) with mod(z) C mod(a, b, c,d)

—b —3a(t)-c
and z(t) < (t)+123£3) (t)-c(t)
PROOF FOR CASE (ii). We only prove (i) Similarly, we can show (i) Since supa(t) < 0, we
teR

can find a sufficiently large M > 0 such that

d
Z <o
dt |,y
On the other hand,
dz _ 2b% — 9abc + (- 8b* + 6ac) /b2 — 3ac +d
dt |, —beVii-da - 27a?

<i(—b+\/b2—3ac)
a

dt 3
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which implies that the Abel differential equation (1 1) has a solution z(t) satisfying

,/ 2 _
_M<z(t) < —b+ Vb —3ac 3ac t>0.
Since —irvbi-Sac g’f“’“" is almost periodic, the Abel differential equation (1 1) has a solution ¢(¢) such that
_ Vb2 —
-Msgn s EYEEE e p

We take a Liapunov function V (¢, z) = %12, then, when — M < z(t) < _—bﬂal::@ ’

Vay(ta(®) - 6(t) = (=(t) - 6 Ft. (1) <0 (— Mo s Yo gf”)

because, when — M < z(t) < "’;*322@ , we find
F(tz, (t)) = 3a(t)z? + 2b(t)z(t) + c(t) < 0.

It follows from Theorem 2 1 that the Abel differential equation (1.1) has an almost periodic solution ¢(t)
with mod(¢) C mod(a,b,c,d) Similarly, we can show the second part of the theorem The proof of the
theorem is complete
From Theorem 3 3, we can get some new results
THEOREM 3.4. Suppose b(t) = 0, a(t), c(t) and d(t) € AP(R), and suga(t) <0,c(t)>0 If
te

. 2c(t)\/ —3a(t) - c(t) dt) _ v —38ac
© 9%(2) +d®) dt 3a )
or
(i) 2c(t)+/ ga?:(t) c(t) +d@) < g <_ vV ;a3ac>,
then the Abel differential equation
Z'(t) = a(t)z® + c(t)z + d(t) 32

has an almost periodic solution z(t) with mod(z) C mod(a, c,d).
THEOREM 3.5. Suppose a(t), b(t), c(t) and d(t) € AP(R) and b*(t) — 3a(t) - c(t) > 0 and
supa(t) <0 If

teR
b% — 9abc + (2b% — 6ac)/b? — 3ac d (_ b+\/bz—3ac>

+d <

27a? dt 3
— 9abc + (6ac + 8b?) /b2 — 3ac 4> —b+V/b? —3ac
27a? dt T 3

then the Abel equation (1 1) has an almost periodic solution z(t) with mod(z) C mod(a, b, c,d)
PROOF OF THEOREM 3.5. Since

dz — 9abc + (2b% — 6ac)y/ b2 — 3ac i< - b+ /b2 — 3ac
dt |, pevP ot - 27a? dt 3a

and
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dz — 9abc + (6ac — 8b%)/b2 — 3ac d b+ /b2 — 3ac
dt |, pevPdec = 27a2 dt 3a '

by the same argument as Theorem 3 3, Abel equation (1 1) has a solution ¢(t) satisfying

—b+\/ —/b? — 3ac

< () < 3a ’

We take a Liapunov function V (t,z) = 3z When

_ b2 — —b—/P2 —
b+ 3: 3ac <z(t) < b b2 — 3ac

3a ’
we have
Vant,z—8t) = (z(t) — ¢(t))’F(¢,£(t) >0,
where
—b+\/b —3ac<§(t —3:2—3ac.

Because F(t,z(t)) > 0 when ﬁ;":@ <z(t)< ﬁslf@ , it follows from Theorem 3 1 that
the Abel differential equation (1.1) has an almost periodic solution ¢(¢) with mod(¢) C mod(a, b, c,d)
This proves Theorem 3.5

Now, we consider the Riccati equation

z'(t) = a(t)z? + b(t)z + c(t). (33)

We have the following
THEOREM 3.6. Suppose a,b,c € AP(R) If

bi(t)  d b(t)
supa(t) <0 and C(t)‘4a(t>>22<‘2a(t>)

then, equation (3 3) has an almost periodic solution z(¢) with z(¢t) > — %(% .
PROOF. (i). Since supa(t) < 0 and c(t) — ;ﬂa(% > 0, we can find a sufficiently large constant
teR
M > 0 such that

dz
dt

=M
and

dz

0 b()
_an ~O” 4(t)2dt( 2a<t))

which implies that equation (3.3) has a solution z(¢) satisfying

b(t)

= o STHSM, teR

We construct a Liapunov function V'(t) = ; z2 When — 5%3 < z(t) < M, we have
2a(t) - z(t) +b(t) <0

and
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Va3t z(t) — ¢(t) = 2a()é(t) +b(t) < 0,
where

b(t)

*mfﬂt)SMv

Hence, equation (3 3) has an almost periodic solution z(¢)with mod(z) C mod(a, b, c) from Theorem
21 This proves Theorem 3 6
We consider equation

z'(t) = — h(z) + g(t)z + f(t). 34)
The Abel differential equation is a special case of (3 4) We have the following results

THEOREM 3.7. Suppose f(t), g(t) € AP(R) If
@) R(z) 20, lim & =0,
z—to0

(i) fy g(s)ds is bounded for t € R,
then, equation (3 4) has an almost periodic solution z(¢) with mod(z) C mod(f, g)
PROOF. For sufficiently large |z|, equation (3 4) can be written in the form

dr z f®
E:h(:t)[—1+%y(t)+h—(x—)-:'.

Since lim %5 = 0and h'(z) > 0, there exists a sufficiently large X' > 0 such that
I— =00

dz
dt

>0 and d_:c_
=K dt

<0,
z=K

hence, equation (3 4) has a solution ¢(t) satisfying
-K<¢(t) <K, teR.

We construct a Liapunov function V (t,z) = z2ezp{ — 2 J; g(s)ds}, then
Vo (t2(t) = 9(0) = 2(a(0) - 6O)ezp(~2 | o(61ds) {-h(a(e) + 0 + (0 ) - 801
- 2(a(t) - 8P olt)ean(~2 [ ols1as)
= - (ol0) - (0 ezp -2 [ glo)is) (o)

where — K < £(t) < K. It follows from Theorem 2.1 that equation (3 4) has an almost periodic
solution ¢(t) with mod(¢) C mod(f,g) The proof of Theorem 3 7 is complete

THEOREM 3.8. Suppose f(t), g(t) € AP(R). If

@ R(z)20,

(ii) there is € > O such that [} (2g(s) + €)ds is bounded,
then, equation (3.4) admits an almost periodic solution z(t) with mod(z) C mod(f, g)

PROOF. We construct a Liapunov function V(t,z) = z'zezp{ - fot (2g9(s) + e)ds} Then, we

have

>
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t
Vg (tz) = — 2:cexp{ - /0 (29(s) + e)ds} : [— F(t) + h(z) — h(0) + h(0) + %x]
= - 2.1:e:z:p{ - /0 (29(s) + e)ds} : [h'(g)x + % z +h(0) — f(t)]
<eV(tz)+2h(0) - f(t)|- e:rp{ - /0 (29(s) +e)ds} -zl

Let L = 2sup |h(0) — f(t)[e:t:p{ — 1 [t2g(s) + e)ds}, then
teR

¢
Vag(tz) < —€eV(t,z)+ L{XIe:cp{ - %/0 (2g(s) -+-e)ds}
= —eV(t,z)+ L/ V(t,x).

Hence, if V(0,z(0)) < —f;, then
L2
Vitz(t) < =, t=0.
€
This implies that equation (3 4) has a bounded solution z(¢) on R We construct a Liapunov function
W(tz)=(z - ¢>(t))261p{ - fot(2g(s) + e)ds}, by the same argument as in Theorem 3 6, we obtain

W4t z) < — ek(z — ¢(t))%,

where k is a constant It follows from Theorem 19 5 in Yoshizawa [5] that equation (3 4) has an almost
periodic solution z(t) with mod(z) C mod(f,g) This proves Theorem 3 8
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