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ABSTRACT. A comultiplication on a monoid S is a homomorphism rn: S S S (the free

product of S with itself) whose composition with each projection is the identity homomorphism.

We investigate how the existence of a comultiplication on S restricts the structure of S. We show

that a monoid which satisfies the inverse property and has a comultiplication is cancellative and

equidivisible. Our main result is that a monoid S which satisfies the inverse property admits a

comultiplication if and only if S is the free product of a free monoid and a free group. We call

these monoids semi-free and we study different comultiplications on them.
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1. INTRODUCTION

Comultiplications can be defined for objects in any category with coproducts and zero mor-

phisms. Given such an object X, a comultiplication is a morphism m X X II X (the
coproduct of X with itself), such that the composition of rn with either projection X t X X
is the identity morphism. The general theory has been surveyed in [1], and in [3] it is specialized

to algebraic systems. In [2], [5] and [6], comultiplications on groups have been studied. In this

paper we extend some of these results to the category of monoids. We are interested in the

following kind of question: given a monoid with a comultiplication, what restrictions does this

place on the structure of the monoid? This question has been answered for groups by Kan who

showed that a group admits a comultiplication if and only if it is free [6]. For monoids, Bergman
and Hausknecht have shown that the existence of an associative comultiplication yields a pre-

sentation of the monoid by generators and relations [3, Thin. 20.16]. Here we study arbitrary

comultiplications on a monoid which satisfies an additional condition (the inverse property). We

show that these monoids are semi-free, i.e., the free product of a free group and a free monoid.

In order to prove this result, we establish along the way, several results for monoids with the
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inverse property which may be of independent interest. In particular, we show that if such a

monoid has a comultiplication, then it is cancellative (Theorem 3.5) and equidivisible (Theorem
4.2). In addition, we study the possible comultiplications on semi-free monoids in 5.
2. BASIC FACTS AND DEFINITIONS
A monoid is a set S with an associative, binary operation and an identity element. The

operation is usually called multiplication and denoted by juxtaposition and the identity element

is denoted by 1. The notions of submonoid and homomorphism of monoids are analogous to

the corresponding notions in group theory. There is also the notion of a free monoid defined

by the usual universal property. A good general reference on monoids is [4]. Every free monoid

has a basis in which each element can be expressed as a word. Moreover, it is proved in [7, 5.1]
that a free monoid has a unique basis which we call the canonical basis.

If S and T are monoids, then one can form the free product S T in analogy to the free

product of groups. A typical element of S,T is a sltls2t2.., s,t,, where s, E S and tj E T. A
product of the first k factors of a, _< k < 2n, is called an initial segment of a. If some factor,
say s, 1, then the expression t,_l 1 t, in a can be replaced by t,_t,. If s2,... ,s,,t,... ,t,_
are all # 1, then a is said to be reduced. If a S T, then the number of non-trivial factors

of a in reduced form, is denoted [a[ and called the length of a. If f" S S’ and g" T T’
are homomorphisms, then a homomorphism f g S T S’ T’ is defined by

(f g)(stl st.) f(s)g(t).. f(s)g(t).

We also have injection homomorphisms i S S T and i2 T S T defined by i (s) s

and i(t) t and projection homomorphisms p S T S and p S T T defined by

pl(a) l-I s, and p(a) [-I tj. If S- T, we write i,(s) s’ and is(t) t" so that a typical

element a of S S can be expressed

a st...s,,, s,,t, S. (2.1)

The equalizer Es of S is the submonoid {a]ae S,S,p(a) p2(a)} of S,S. Then

PlIEs P2[Es and we denote this homomorphism by p" Es S. A comultiplication rn on S
is a homomorphism rn S S S such that plm prn id" S S. The comultiplication m

is called associative if (id,m)m (m,id)m" S S,S,S. A section of p is a homomorphism

# S Es such that plz id" S S. Clearly comultiplications of S correspond to sections of

p. In particular, if S admits a comultiplication, then S can be embedded in Es.
Given a monoid S, let {z8 Is S} be a set in one-to-one correspondence with S. The free

group in S, [4, 12.1], is the group S with presentation (z8 ]zzt z,t, s,t e S). Then a

homomorphism - S S is defined by t(s) z. Moreover, if G is a group and f S G is

a homomorphism of monoids, then there is a uniquely defined group homomorphism f" S G
with ft f. Thus, if S admits a comultiplication m, then S admits a comultiplication with

t (t t)rn. Finally, by [4, Thm. 12.4], S embeds in a group if and only if t" S S is an

embedding.

If S is a monoid and a, b S with ab 1, then b is called a right inverse of a and a is

called a left inverse of b. If a S has a left inverse and a right inverse, then they are unique

and equal. We then say that a is invertible with inverse a-. The set Us of invertible elements

of S is a submonoid of S which is a group.

Definition 2.2. Let S be a monoid.

(1) S has the inverse property if whenever a, b S and ab 1, then ba 1.
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(2) S is cancellative or a cancellation monoid if ab ac or ba ca implies b c, for all

a, b, c E S.

In verifying cancellation, we usually establish one of the two implications. The other is proved

analogously. We note that if a monoid satisfies either property of Definition 2.2, so does every

submonoid.

Clearly every cancellation monoid has the inverse property: For if ab 1, then (ba)(ba)
(ba)l, and so ba 1. However, the converse is not true since the monoid S 1, a, a with

a a has the inverse property but is not cancellative.

3. THE INVERSE PROPERTY AND CANCELLATION
In this section we show that a monoid with a comultiplication which has the inverse property

is cancellative. We begin with some simple lemmas.

Lemma 3.1. If S and T have the inverse property and a, 6 S T are in reduced form, then

there exists a,, S T such that is invertible, a a-, anda is in reduced

form. Furthermore, 1 or is an initial segment of .
Proof. Express a and in reduced form as

s,, = z,,, (3.2)
I=1 :=1

where s,, x S and t,, yj T and consider

a s’ t"x’ ".

We list several cases.

Case 1: to and x are both -# 1. Then a is in reduced form and so we set 1.

Case: to=l Thena= ...t soXl) y xpy. Let be the smallest integer _> 0 such

that either (i) so_tx+ 1 or (ii) to__,y,+ 1. We only consider (i) since (ii) is analogous.

We have

sox 1, to_y 1, t,_ty and

xla st ..t__ Y+

By the inverse property for S and T, x[ so, y- to_,
andxy xzy is invertible with - t,_" s’o_z+z s and we set

x+y+ y.
Case 3: xo 1. This is similar to Case 2, and hence omitted.

Lemma 3.3. Let S and T be monoids.

(1) If S and T have the inverse property, then S T has the inverse property.

(2) If S and T are cacellative, then S T is cancellative.

Proof. (1) Suppose a, @ S. T with af 1. By Lemma 3.1, there exists ,a,f E S. T such

that is invertible, a a-, f Sf and af is in reduced form. Since af af 1, it

follows that either a f or a 1 . In either case fa 1.

(2) Suppose af 3f, where a,,f S. T are all reduced. By Lemma 3.1, there exists

6t,c,,6:,/, e S * T such that 6t,6 are invertible, a

: and a and/ are reduced. By Lemma 3.1, 6 and 6 are either or an initial

segment of . We distinguish two cases: (i) Il < Il d () Il < Il nd only tret (i).
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If [6,[ < I=l, then 6= 6/ for some invertible 7. Hence 11 12 {1’2. Thus

f 7f=- Therefore aVf= af fl=f=. There are now several cases to consider depending

on whether a7 and fl= end with a primed or double-primed term and fz begins with a primed

or double-primed term. For example, suppose that a7 and = end with primed terms (say
s’, and u’;, respectively) and begs with a primed term (say z). Then s,za uz. By
cancellation we obtn s, u and m a7 fl=. All other cas are treated similarly. Thus

a a? af ft.

Corolly 8.4. Let S be a monoid.

(1) ffS h the inverse prope then Es h the inverse property, ff S is ccellative, then

Es is canceHative.

(2) Let S have a comtiplication. If Es h the inverse prope then S h the inverse

propey. If Es is cancellative, then S is cancellative.

Theorem 3.5. If S is a monoid with the inverse property and S admits a comultiph’cation,

then S and Es are cancellative.

Proof. We first show that if E Es and 1, then [21 > [[. Suppose [21 _< [[. We write as

3’s’ or 7t’ for some ,, E S.S and s, non-trivial elements of S. If 7s’, then a 7s’/s’
and so 67 1. By 2.9., 7- and hence 7s’/-. Therefore pa() pa(/)pa(/-) 1.

Hence 1 p() pa(7)s(p(/))- and so s 1. This contradicts # 1. A similar argument

holds if 7t".
Next we show that Es has the following weak cancellation property: a a or a a

implies 1 for a, Es. Suppose c a and 1. Then [a[ > [[. Then a a, for all

k >_ 1, and we choose N such that [N[ > 2[0[. Then aN cannot equal a since their lengths are

different. This contradicts 1. The other implication is proved similarly.

It now follows that S has this same weak cancellation property: ax a or za a implies

z 1. This is because the comultiplication m on S provides an embedding of S into Es and

the weak cancellation property is inherited by submonoids.

Now we prove that S is cancellative. Suppose az bx in S. Then a 3, where a re(a),
re(b) and re(x). We represent a and by (3.2) and

12I (3.6)l,kV
k=l

which are all assumed to be reduced. Again we consider cases.

Case 1: t, v, x are all 1. Clearly a and so a b.

Case : x 1. Then

,( ..;.vqy

If t,yx and vqyi 1, then, comparing both sides of the above equation from the right, we

obtain sx: x:. This implies that s 1, contradicting the fact that c is reduced. Thus

Vqy 1. We continue in this manner and conclude that if k cancellations are required to

write ( in reduced form, then exactly k cancellations are needed to put f into reduced form.

Therefore by Lemma 3.1, there exists at, f,, $ S, S with 5 invertible such that a a5-,
$-, $ and ax and f are reduced. Assume that a ends in an s (a similar

argument holds if a ends in a t). Then begins with some x and fl ends with some u’.
Furthermore sx 1 and ux 1. We can further factor
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for some a.,,(2 E S, S. Thus a(sx)’( B(ux,)’(. Since these are reduced, we cancel

2 from both sides and then multiply on the right by -1, getting a(sx)’$
Applying p, we have

a p2(ot) p2(Ol2(SkXl)’l-1) p2(2(rX/)’-1) P2() b.

Case 3: x 7 1 and t or v 1. This case is like Case 2, and hence omitted.

This proves that S is cancellative. By Corollary 3.4, Es is cancellative.

4. EQUIDIVISIBILITY
We have need of the following definition [7, p. 103].

Definition 4.1. A monoid S is equidivisible if the equation ax by in S implies that either

there exists a c E S such that a bc and cx y or there exists a d S such that b ad and

Note that if S is cancellative, then S is equidivisible if ax by implies that either there exists

a c S such that a bc or there exists a d S such that b ad.

Theorem 4.2. /f the monoid S has the inverse property and admits a comultiplication, then

S is equidivisible.

Proof. We assume ax by in S and apply rn to obtain a 3r/, where a rn(a), 1 rn(b),
re(x) and r/= rn(y). By Lemma 3.1, there are elements 6, 0, a, (1, 1, rh S S such that

and 0 are invertible, a a15-1, $, B 10-1, r/= 0rh and al and rh are reduced.

Case 1: [al[ < [/31[. Since a( rh is an equality of reduced expressions, alA 1 for some

A or. S,S. Then

a(6o-) a-o- 3o- 3.
We apply p to this and get ad b, where d

Case : 131 < [al 1. This is similar to Case 1.

Case 3: [al[ [31 [. Let us assume that al ends with s (a similar argument holds when al ends

with t) and so 1 begins with some x. We write al ls and 1 xl.’ Since [al[= [1[,
andrh=wtrh ThenWe write/31 =/lu/31 ends with some u’ and so rh begins with some w

l(sx)’(l 31(uw)’l yields 1 BI. Now

a p(a) p(ls’5-1) p(,)p(5-1) and

() (;0-’) p(,)(o-’).

Thus a cu and b cv, where u and v are invertible, and so a b(v-lu). F

Corollary 4.3. It" a monoid S adm/ts a comLdtiplication rn and has the inverse property, then

S S and Es are equidivisiNe.

Pro@ First note that rn induces a comultiplication on S S given by

S , S :- S , S , S , S ’:-2 S , S , S , S,

where T S S S S interchanges the two factors. By 3.3, S S has the inverse property.

By 4.2, S S is equidivisible.

Now suppose a( r in Es. Since Es C_ S S and S S is equidivisible, there exists

q, S,S such that a B’r or there existsa S,S such that aS. In the former

case, pl(3)pl() p,(a) p(a) p()p(/). Since Pl() p(/3) and S is cancellative,

Pl(/) P(V). Thus /e Es. The other case is similar. Equidivisibility for Es now follows by

3.4.

The following proposition will be generalized in 6.
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Proposition 4.4. Let S be a monoid. Then the foBowing are equivalent:

(1) S admits a comultiplication, S has the inverse property and the group of invertible

elements Us 1.

(2) S is a free monoid.

In this case, any comultiplication of S is associative.

Proof. We first show (1) implies (2). If x and we can write x uv for u # and v # 1, then

u is called a left factor of x. By [7, Cor. 5.1.7], it suffices to show that every non-trivial x S

has finitely many left factors. Suppose u is a left factor of x. Then rn(x) m(u)rn(v). There

can be no cancellation between the last factor of re(u) and the first factor of re(v) because S has

the inverse property and Us 1. Thus m(u)rn(v) is in reduced form. If we write ( l-I,__l z:v:’,
then for some l, 0 <_ < p,

re(u)= x;y’ z,+l or s’,

where r or is a left factor of yz+l and where s 1 or is a left factor of xz+l. In the first case

-l+u prn(u) ,,,= x, and in the second case u p2rn(u) [l,= y,. Thus every left factor u

of x has the form u I-I+,=1 x, or u 1,= y,. Since there are only finitely many of these, x has

finitely many left factors. This proves (2).
For (2) implies (1) it is clear that if S is free, then S has the inverse property and Us 1. If

Y C_ S is a basis, then a comultiplication of S is defined by re(y) y’y" for y Y. This proves

().
If S is a free monoid with basis Y, then re(y)

t ..-to y, and this implies some s, y, some tj y and all other factors are trivial. Therefore

re(y) y’y" or re(y)

5. SEMIFREE MONOIDS
In this section we study comultiplications on certain monoids (called semi-free). We shall

see in 6 that a large class of monoids with comultiplication (namely those with the inverse

property) are semi-free. We begin with some preliminaries.

We recall from [2] some basic facts about comultiplications on groups. Let F be a group with

comultiplication n. We know that EF is a free group with basis a’a", for all a - 1 in F,
and so F is a free group [5]. If X is a basis for F, then for every x e X, n(x) can be expressed as

a reduced word in finitely many of the generators 6,(,), where 6,(x) F, and 1,... ,k. (We
have in fact given an algorithm in [2] for finding the $,(x).) Then the set A, {$,(x)[ z X} is

the quasi-diagonal set of n and is essential to our study of comultiplications on groups in [2].
For example, if D {dl d F, d 1, n(d) d’d"} is the diagonal set of n, then Do C Ao,
and n is associative if and only if D, A.
We next consider analogues of these sets for monoids. Let S be a monoid with comultiplication

rn. We define the diagonal set D, and antidiagonal set D, of m by

D,, {did S, d 1, re(d) d’d"} and

D, {did S, d not a unit, re(d) d"d’}.

Recall from 2 that we can associate to S the free group S in S and a natural homomorphism

u S . Then m induces a comultiplication " * such that u ( )rn.
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Definition 5.1. A monoid S is semifree if S U M, where U is a free group and M is a

free monoid.

Hence if S is semifree, the group of invertible elements Us U and M has a canonical

basis Y (2). If X is any basis of U, we say that (X, Y) is a basis for S. The cardinality
of X t2 Y is called the rank of S. Clearly S U M, and M is the free group with basis

Y. If m is a comultiplication on S and is the induced comultiplication on , then [u
rn]u U U , U. Moreover, for each y E Y, rn(y) IJs’,t’,’ S , S which we assume is

reduced. Since l-I s, l-I t, y, it follows that for precisely one index j (resp., k) sj ujyv

and u,va,s, U for all j (resp., t wiyzi and w,z,t, U for all # k). Moreover,
sl...s_luj vsj+.., s 1 and similar equations hold for the t,, wi, z. Now we proceed to

compute the quasi-diagonal set A of . Clearly zh A,,lu U A, where A {,(y)[y y}.
By the above remarks, if j < k and y Y, then 6,(y) e U for all q [22- 1, 2k- 1] and , (y) is

of the form u, yv, for all e [2j- 1,2k- 1], where u,, v, U. If k < j and y Y, then ,(y) e U
for all/ [2k- 1,2j- 1] and $,(y) =u,y-lv, for all/e [2k- 1,2j- 1], where u,,v, e U.

Thus the expressions for the 6, (y) E A which are not in U are all of the form uyv or all of
the form uy-lv, where u, v U. If A lies in S we say that is a quasidiagonal element
of rn and denote the set of quasidiagonal elements by A,,. If $- A t3 S and is not a unit,

then we say that 6- is a quasi-antidiagonal element of rn and denote the set of such elements
by A,. Thus A, is the union of A,u, the units in A and all elements of the form uyv in A,
and A% consists of all elements of the form v-yu-, where uy-v A. Clearly D, C A,, and

D, C_ A,.
We illustrate all of this with a concrete example. For ease of notation we write for the

inverse of a group element s and for a’a" e Es. We use the algorithm of [2] to express an

element of Es as a word in the ’s.

Example 5.2. Let S be a semifree monoid of rank 4 with basis X Y, where X {xl,x}
and Y {y, y }, and define a comultiplication rn by

Note that the comultiplication ml= is Example 3.7(2) of [2]. Then we have

A {xl, x:, "., x,x’-, xyx, x,x2, 2x,x:} and {x,, xly’},

and so A,, {x, x, , x,5, xx}, D,, {x,},

A:, {xyx, xx,y} and D {xyx}.

The following theorem is then proved analogously to [2, (3.6) and (4.5)].

Theorem 5.3. If S is a finite rank semifree monoid with comultiplication rn, then

(1) The set A, is a finite set of generators of Us and A, U A is a finite set of generators
of S.

(2) The comultiplication rn is associative if and only if A. D, and A D.
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6. THE MAIN THEOREM
In this section we prove the main result of the paper (Theorem 6.3). If a and b are elements

of a monoid S, then a and b are said to be associate if a bu for some u E Us. Clearly this is

an equivalence relation on S. We denote by {a> the equivalence class of a E S.

Definition 6.1. Let S be a monoid and a S. If the set (u) lu a left factor of a} is finite,
then a is called finitely decomposable. /f { (u> lu a left factor of a} has one dement, then a

is called indecomposable.

The following is a generalization of [4, Thm. 9.6].

Lemma 6.2. A monoid S is semi-free if and only

(1) S is cancellative,

(2) Us is a free group,

(3) S is equidivisible and

(4) each element of S is finitely decomposable.

Proof. These are clearly necessary conditions. To show sufficiency, let Y be the set of non-units

of S which are indecomposable. As in [4, Thin. 9.6], Y generates a free monoid M with UM
and Us M 1. We show now that Us and Y generate S. If a is indecomposable, then either

a Us or a Y. If not, a aa, where a is not a unit. If a and a are indecomposable, then

we are done. Otherwise we continue this process and obtain for each n a product a a...a
with a...a, not associate to a...a,+. We claim that (a>, (aa>, (a-.. a,> are distinct

classes. For if a...a, is equivalent to a...a, j > i, then by cancellation, a,+...a is a unit.

Thus a,+,... ,a are units. This contradicts our previous assumption. Thus for any n, we

obtain n distinct equivalence classes of left factors of a. This contradicts (4).
Finally, to show that each element of S can be uniquely represented in terms of Us and Y,

see [4, Thm. 9.6].

We now prove our main theorem. The result is in the spirit of Kan’s work on groups with a

comultiplication [6]. Its prototype is the result of Bergman-Hausknecht [3, Thm. 20.16] which

classifies all monoids which admit an associative comultiplication. For such monoids, Theorem

6.3 follows from [3, Thin. 20.16].

Theorem 6.3. If S is a monoid with the inverse property, then S admits a comultiplication if

and only if S is semi-free.

Proof. Clearly if S is semi-free, S admits a comultiplication (see 5). Now suppose that S

admits a comultiplication m. Then by Theorem 3.5, S is eancellative and by Theorem 4.5, S is

equidivisible. Also m induces a comultiplication on Us, and so Us is a free group [6]. Thus it

suffices to show that S has property (4) of Lemma 6.2. We do this in a similar way to the proof

of Proposition 4.4. Suppose x S and u is a left factor of x. Then x uv for some v E S, where

# =d # , =d o () (/(). Suppo () ,,,, dud. By
Lemma 3.1, re(u) a and re(v) -, where a, for a, , e S S. Thus u p,m(u)
is a product of the form (1-1l x)d or (1-1l y)e, where d, e e Us is the image of p, or p of $ and

Thus here are only finitely many equivalence classes of lef factors of z. This complees he

proof.

We conclude with wo corollaries of Theorem 6.3.
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Corollary 6.4. If S is a cancellative and equidivisible monoid, then Es is semi-free.

Corollary 6.5. If S is a commutative monoid with comultiplication, then S , N, the [ree

monoid on one generator, or S ,m Z, the [ree group on one generator.

Note that there are exactly two comultiplications on N (see the proof of Proposition 4.4)
and that the comultiplications on 7/, have been classified in [2, Lem. 6.9].
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