A NEW LOOK AT MEANS ON TOPOLOGICAL SPACES

PETER HILTON

Department of Mathematics University of Central Florida Orlando, FL 32816-1364 USA

and

Department of Mathematical Sciences SUNY, Binghamton Binghamton, NY 13902-6000 USA

(Received June 5, 1997)

ABSTRACT. We use methods of algebraic topology to study when a connected topological space admits an n-mean map.

KEY WORDS AND PHRASES: Means, topological spaces, comeans 1991 AMS SUBJECT CLASSIFICATION CODES: 55PXX

1. INTRODUCTION

Carathéodory and Aumann (see [1],[2]) were among the pioneers who first considered the question of what path-connected regions X in \mathbb{R}^m or \mathbb{C}^m could support an *n*-mean, that is, a map $\mu : X^n \to X$ satisfying

(i) $\mu \triangle = 1$; $X \to X$, where \triangle is the diagonal map $\triangle : X \to X^n$; and

(ii) $\mu \sigma = \mu : X^n \to X$, where $\sigma \in S_n$, the symmetric group on *n* letters, acting on X^n by permuting components One of their main concerns was to find out if the existence of such an *n*-mean, $n \ge 2$, implied that X was simply connected

In 1954, Beno Eckmann [4] attacked the question with the tools of algebraic topology He supposed X to be a polyhedron and only required conditions (i), (ii) above up to homotopy One of his principal conclusions was that if X is compact and admits a (homotopy) *n*-mean for all *n*, then X is contractible

In 1962, Eckmann, together with Tudor Ganea and the author, returned to the study of *n*-means in a more general setting (see [5]). Thus the *n*-mean defined in [4] was a morphism in the category \mathcal{T}_h of based connected CW-complexes and based homotopy classes of based maps In this generality one was able to exploit the idea of mean-preserving functors. Thus if C, \mathcal{D} are categories with products and $F: \mathcal{C} \to \mathcal{D}$ is a product-preserving functor, then $F\mu$ is an *n*-mean in \mathcal{D} for any *n*-mean μ in \mathcal{C} Moreover, one could also examine the dual question of the existence of *n*-comeans

It turns out that the concept of *P*-local objects and *P*-localization, where *P* is a family of primes, and the results related to these concepts in the categories T_h and N, the category of nilpotent groups (see [6]), enable one to simplify many arguments in [5] and to extend the results of that paper

2. MEANS IN THE CATEGORY OF GROUPS

Let G be the category of groups Let n be an integer, $n \ge 2$, and let P be the family of primes p such that p/n We then prove

THEOREM 2.1. The group G admits an n-mean μ in $\mathcal{G} \Leftrightarrow G$ is commutative and P-local In that case, if we write G additively, μ is given by

P HILTON

$$\mu(g_1, g_2, \cdots, g_n) = \frac{1}{n}(g_1 + g_2 + \cdots + g_n).$$
(2 1)

PROOF. Note first that if G is commutative, then G is P-local if and only if G admits unique division by n It is then plain that (2 1) defines an n-mean on G

Conversely, let μ be an *n*-mean on G For $g, h \in G$ (at this stage, we write G multiplicatively), set $\mu(g, e, \dots, e) = \gamma$, $\mu(h, e, \dots, e) = \delta$ Then, by condition (ii),

$$\mu(e,g,\cdots,e)=\cdots=\mu(e,e,\cdots,g)=\gamma_{e}$$

so that, by condition (i),

$$g = \mu(g, g, \cdots, g) = \gamma^n.$$

Similarly, $h = \delta^n$ But $\mu(g, h, \dots, e) = \gamma \delta$, $\mu(h, g, \dots, e) = \delta \gamma$, and $\mu(g, h, \dots, e) = \mu(h, g, \dots, e)$ Thus γ commutes with δ , so that g commutes with h and G is commutative. To show that G is P-local it remains to show that n^{th} roots are unique in G. But, again using properties (i) and (ii), we conclude that $\mu(g^n, e, \dots, e) = \mu(g, g, \dots, g) = g$, so that g is determined by g^n . Thus G is commutative and P-local and, writing additively, we have

$$\mu(g_1, g_2, \dots, g_n) = \sum_{i=1}^n (g_i, 0, \dots, 0) = \sum_{i=1}^n \frac{1}{n} g_i = \frac{1}{n} (g_1 + g_2 + \dots + g_n).$$

COROLLARY 2.2. Let G be a group and let $n_1 \ge 2$, $n_2 \ge 2$ be integers Then G admits an n_1n_2 -mean if and only if G admits an n_1 -mean and an n_2 -mean

3. MEANS IN THE CATEGORY T_h

Let X be a connected CW-complex with base point. We prove, with n, P as in Section 2,

THEOREM 3.1. Suppose X admits an *n*-mean $\mu: X^n \to X$ in \mathcal{T}_h Then X is a *P*-local commutative *H*-space

PROOF. We regard the *i*th homotopy group π_i as defining a product-preserving functor from \mathcal{T}_h to \mathcal{G} Then $\mu_* = \pi_i \mu : (\pi_i X)^n \to \pi_i X$ is an *n*-mean in \mathcal{G} It follows that $\pi_i X$ is commutative (this is only significant for i = 1) and *P*-local and that μ_* has the form (2 1).

Let $i_1: X \to X^n$ be the obvious embedding. Then $(\mu i_1)_{\bullet}$ is the endomorphism $g \mapsto \frac{1}{n}g$ of the commutative *P*-local group $\pi_i X$. It follows that $(\mu i_1)_{\bullet}$ is an automorphism for all *i*, so that μi_1 is a self-homotopy-equivalence of *X*. Let $\rho: X \to X$ be homotopy inverse to μi_1 . Let $i_1 : X^2 \to X^n$ be the obvious embedding and let $m = \rho \mu i_{12} : X^2 \to X$. Then it is easy to see that *m* is a commutative *H*-structure on *X*. We conclude that *X* is a *P*-local commutative*H*-space

From Theorem 2.1 we deduce, more easily than in [5],

THEOREM 3.2. If a compact, connected polyhedron X admits an *n*-mean for some $n \ge 2$, then X is contractible.

PROOF. Since the homotopy groups of X are P-local, so are the homology groups $H_iX, i \ge 1$ (see [6]). Now Browder has shown [3] that a compact, connected polyhedron X which is an H-space satisfies Poincaré duality. Thus, if X is not contractible, there exists a positive dimension N which contains the universal class giving rise to the duality isomorphism $H_i(X) \simeq H^{N-i}(X)$. In particular, $H_NX = \mathbb{Z}$, but this is absurd, since \mathbb{Z} is not divisible by n

REMARK 1. We have not invoked commutativity of the H-structure in this argument If we do so, we may apply a theorem of Hubbuck showing that X would be equivalent to a product of circles, which is also impossible for a non-contractible P-local space

REMARK 2. Theorem 3.2 is delicate The *n*-solenoid is compact and admits an *n*-mean but is not a polyhedron The Eilenberg-MacLane space $K(\mathbb{Q}, m)$ is a polyhedron and admits an *n*-mean for every *n*, but is not compact

We have not proved—and doubt the truth of—the converse of Theorem 3 1 However, one may readily prove

THEOREM 3.3. If X is a P-local, connected, commutative, associative H-space, then X admits a unique homomorphic *n*-mean. Further, if the connected H-space (X, m) admits a homomorphic *n*-mean, then (X, m) is commutative and associative.

The case n = 2 admits a very neat and precise statement. If $\mu : X^2 \to X$ is a 2-mean on X, we define ρ as in the proof of Theorem 3.1 as homotopy inverse to μi_1 , and $m = \rho \mu$ is a commutative H-structure on the P-local space X, where P is the family of odd primes Conversely, if $m : X^2 \to X$ is a commutative H-structure on the P-local space X, we define τ to be homotopy inverse to $m \triangle : X \to X$ (notice that $m \triangle$ induces doubling on the homotopy groups of X and is therefore a self-homotopy-equivalence). Then $\mu = \tau m$ is a 2-mean on X.

THEOREM 3.4. The function $\mu \mapsto \rho\mu$ sets up a one-one correspondence between 2-means on the *P*-local connected CW-complex X and commutative *H*-structures on X

PROOF. If $m = \rho\mu$, then $\mu \triangle = \rho\mu \triangle = \rho$, so τ , defined above, is homotopy inverse to ρ and $\tau m = \mu$. If $\tau \mu = \mu$, then $\tau = ui_1$ so, again, ρ is homotopy inverse to τ and $\rho\mu = m$. Thus the function $m \mapsto \tau m$ is inverse to the function $\mu \mapsto \rho\mu$.

4. THE DUAL STORY

Whereas the product in a familiar category (like T_h , G) takes a familiar form essentially independent of the category, the form of the coproduct depends very much on the category in question The three categories which will come into question here are T_h , G, and Ab, the category of abelian groups

Let C be a category admitting finite coproducts, we will write $C \vee D$ for the coproduct of C and D in Cand C_n for the coproduct of n copies of C in C. Obviously, the symmetric group S_n acts on C_n , we will write $\nabla : C_n \to C$ for the codiagonal, which is the morphism that coincides with the identity on each copy of C in C_n Then an **n**-comean on C is a morphism $\mu : C \to C_n$ such that (i) $\nabla \mu = 1 : C \to C$, and (ii) $\sigma \mu = \mu$, for all $\sigma \in S_n$ We prove

THEOREM 4.1. In \mathcal{G} only the trivial group admits an *n*-comean, $n \geq 2$

PROOF. Let G be a non-trivial group and let $g \in G$, $g \neq e$ If $\mu : G \to G_n$ is an n-comean, $n \geq 2$, then it follows from (i) that $\mu g \neq e$ Now G_n is the free product of n copies of G, so a non-trivial element of G_n is uniquely expressible as $h_{i_1}h_{i_2}\cdots h_{i_k}$, where $G_{(i)}$ is the i^{th} copy of G in G_n , $h_i \in G_{(i)}$, $h_i \neq e$, and $i_q \neq i_{q+1}$, $q = 1, 2, \dots, k-1$ Such an element is obviously moved under any permutation σ which moves i_1 , so that condition (ii) is violated.

THEOREM 4.2. In Ab, the abelian group A admits an *n*-comean, $n \ge 2$, if and only if it admits an *n*-mean In that case $\mu : A \to A_n$ is given by

$$\mu(a) = \left(\frac{a}{n}, \frac{a}{n}, \cdots, \frac{a}{n}\right). \tag{41}$$

PROOF. We note first that, in Ab, $C \lor D = C \oplus D$, so that $A_n = A^n$ If A admits an n-mean, then, by Theorem 2.1, it is clear that (4.1) is an n-comean. Suppose conversely that $\mu : A \to A_n$ is an n-comean It is then plain from (ii) that $\mu(a) = (\alpha, \alpha, \dots, \alpha)$ for some $\alpha \in A$ such that, by (i), $n\alpha = a$. It remains to show that division by n is unique in A. But

$$\mu(na) = (n\alpha, n\alpha, \cdots, n\alpha) = (a, a, \cdots, a),$$

so that a is determined by na

P HILTON

REMARK. Note that the situations for means and comeans are very different Means in \mathcal{G} coincide with means in $\mathcal{A}b$, on the other hand, there are no non-trivial comeans in \mathcal{G} but there are non-trivial comeans in $\mathcal{A}b$, and, moreover, the objects in $\mathcal{A}b$ admitting *n*-comeans coincide with those admitting *n*-means

We now study *n*-comeans in T_h . Using the same notation as in Theorem 3.1, we prove

THEOREM 4.3. Suppose X is a connected CW-complex admitting an n-comean $\mu: X \to X_n$ in \mathcal{T}_h , $n \ge 2$ Then X is a simply connected P-local commutative H'-space

PROOF. Now X_n is just a bouquet of n copies of X Since $\pi_1 : \mathcal{T}_h \to \mathcal{G}$ is coproduct-preserving, $\pi_1 \mu$ is an n-comean on the fundamental group $\pi_1 X$, so that, by Theorem 4 1, X is simply connected Now the homology groups H_i , $i \ge 1$, are coproduct-preserving functors $\mathcal{T}_h \to Ab$, so that, by Theorems 2 1 and 4 2, the homology groups $H_i X$ are the P-local. Since X is simply connected, this implies that X is P-local Finally we adopt a line of reasoning entirely analogous to that in the proof of Theorem 3 1 to conclude that X admits a commutative H'-structure $m : X \to X_2$ (Notice that, since X is simply connected, a map $f : X \to X$ inducing homology isomorphisms is a homotopy equivalence.)

Notice that there are straightforward and valid duals of Theorems 3.3 and 3.4 On the other hand, Theorem 3.2 does not dualize. For example, the Moore space $M(\mathbb{Z}/2, m)$, $m \ge 2$, characterized as the unique simply connected homotopy type with $H_2 = \mathbb{Z}/2$, $H_i = 0$, $i \ge 3$, is a compact (m + 1)dimensional polyhedron which admits an n-comean for every odd n

REFERENCES

- [1] AUMANN, G, Math. Annalen 111 (1935), 713-730
- [2] AUMANN, G, Math. Annalen 119 (1943), 210-215
- [3] BROWDER, W, On torsion in H-spaces, Ann. Math. (2) 74 (1961), 24-51
- [4] ECKMANN, B., Räume mit Mittelbildung, Comm. Math. Helv. 28 (1954), 329-340
- [5] ECKMANN, B., GANEA, T and HILTON, T., Generalized means, Studies in Mathematical Analysis and Related Topics, Stanford University Press (1962), 82-92.
- [6] HILTON, P., MISLIN, G. and ROITBERG, J., Localization of nilpotent groups and spaces, Mathematical Studies 15, North Holland (1975)