ON THE EXTREME POINTS OF SOME CLASSES OF HOLOMORPHIC FUNCTIONS

NICOLAS SAMARIS

Department of Mathematics University of Patras Patras 26110 Greece

(Received February 1, 1994 and in revised form June 30, 1994)

ABSTRACT. Let U be the unit disk, $D \supset U$ an open connected set and $z_0 \in D$. Let also $P(z_0, c, D)$ be the class of holomorphic functions in D for which $f(z_0) = c$ and Ref(z) > 0 in U. We find the extreme points of the class $P(z_0, c, D)$.

KEY WORDS AN PHRASES. Extreme points, positive real part. 1991 AMS SUBJECT CLASSIFICATION CODES 30C45.

INTRODUCTION. 1.

Let U be the unit disk $\{z : |z| < 1\}, D \supset U$ an open connected set, $z_0 \in D$ and H(D) be the class of holomorphic functions in D. By $P(z_0, c, D)$ we denote the class of the functions $f \in H(D)$ for which $f(z_0) = c$ and Ref(z) > 0 in U. Let **EP** (z_0, c, D) be the subclass of the extreme points of the above class for $\mathbf{P} = \mathbf{P}(0, 1, U)$ it has proven [1] that

$$\mathbf{EP} = \{ (\epsilon + z)(\epsilon - z)^{-1} : \epsilon \in \partial U - D \},\$$

In this paper we find the points of the subclass $EP(z_0, c, D)$.

2. MAIN RESULT.

THEOREM. (i) If $(1 - |z_0|)Rec \le 0$ then $EP(z_0, c, D) = \emptyset$. (ii) If $(1 - |z_0|)Rec > 0$ then $f \in \mathbf{EP}(z_0, c, D)$ iff it has the form

$$f(z) = x_1(\frac{\epsilon+z}{\epsilon-z}) + ix_2$$

where $\epsilon \in \partial U - D$, $x_1 = Rec[Re(\frac{\epsilon + z_0}{\epsilon - z_0})]^{-1}$ and $x_2 = Imc - x_1 \cdot Im(\frac{\epsilon + z_0}{\epsilon - z_0})$ PROOF. Let $f \in \mathbf{P}(z_0, c, D)$ with $f(z) = \sum_{n=0}^{\infty} \alpha_n z^n$ in U. Let also r < 1, S be a complex number and M > 0 such that 0 < 2|S| < M and $z \in \partial U$. Since

$$[1 \pm \frac{1}{M}(Sz + \overline{S}z^{-1})]Ref(rz) > 0$$

then

$$Re[f(rz) \pm \frac{1}{M}(Szf(rz) + \overline{S}\sum_{n=0}^{\infty} \alpha_n r^n z^{n-1} + S\overline{\alpha}_0 z)]$$
(1).

By the maximum principle for harmonic functions it follows that (1) holds for every $z \in U$. Therefore for $r \to 1$ we have $Re(f(z) \pm u_1(z)) > 0$ in U where

$$u_1(z) = \frac{1}{M} [\overline{S} z^{-1} (f(z) - \alpha_0) + S \overline{\alpha}_0 z + S z f(z)]$$
⁽²⁾

Choosing appropriate $S \neq 0$ we get $Reu_1(z_0) = 0$. Setting $u(z) = u_1(z) - iImu_1(z_0)$ from $u(z_0) = 0$ it follows that $f \pm u \in \mathbf{P}(z_0, c, D)$.

Let now $f \in EP(z_0, c, D)$. Then it is obvious that u(z) = 0 in D. If we set $S = |S|e^{i(w+\frac{\pi}{2})}$ then from equality u = 0 we conclude that f has the form

$$f(z) = \frac{\xi_1(1+z^2e^{2i\varphi}) + \xi_2 z e^{i\varphi}}{(1-z^2e^{2i\varphi})} + i\xi_3 = \frac{1}{2}(\xi_1 + \frac{\xi_2}{2})(\frac{1+e^{i\varphi}z}{1-e^{i\varphi}z}) + \frac{1}{2}(\xi_1 - \frac{\xi_2}{2})(\frac{1-e^{i\varphi}z}{1+e^{i\varphi}z}) + i\xi_3,$$

where $\xi_1, \xi_2, \xi_3 \in \mathbb{R}$.

We now prove that $|\xi_2| = 2\xi_1$. From the Caratheodory's inequality we have $|f'(0)| \leq 2Ref(0)$ and hence $|\xi_2| \leq 2\xi_1$. If $|\xi_2| < 2\xi_1$ then there are ξ_1^*, ξ_2^* such that $0 < |\xi_1^*| < \xi_1 + \frac{\xi_2}{2}, 0 < |\xi_2^*| < \xi_1 - \frac{\xi_2}{2}$, and $Reu_1^*(z_0) = 0$, where

$$u_1^*(z) = \xi_1^*(\frac{1+e^{i\varphi}z}{1-e^{i\varphi}z}) + \xi_2^*(\frac{1-e^{i\varphi}z}{1+e^{i\varphi}z})$$

Setting $u^*(z) = u_1^*(z) - iImu_1^*(z_0)$ then $f \pm u^* \in \mathbf{P}(z_0, c, D)$. Since $f \in \mathbf{EP}(z_0, c, D)$ it follows that $u^* = 0$ and hence $\xi_1^* = \xi_2^* = 0$. Therefore if $f \in \mathbf{EP}(z_0, c, D)$ then $|\xi_2| = 2\xi_1$ and hence f has the form

$$f(z) = x_1(\frac{\epsilon + z}{\epsilon - z}) + ix_2, x_1 > 0, x_2 \in \mathbb{R}, \epsilon \in \partial U - D.$$
(4)

From (4) we have

$$x_1 = Rec[Re(rac{\epsilon+z_0}{\epsilon-z_0})]^{-1} > 0$$
 and hence $(1-|z_0|)Rec > 0$

Let $f \in \mathbf{P}(z_0, c, D)$ and having the form (4). Let also $0 < \lambda < 1$ and $f_1, f_2 \in \mathbf{EP}(z_0, c, D)$ such that $f = \lambda f_1(1-\lambda)f_2$. Then

$$\frac{\epsilon+z}{\epsilon-z}=\lambda^*g_1(z)+(1-\lambda^*)g_2(z) \text{ in } U,$$

where

$$\lambda^{\star} = \lambda \frac{Ref_1(0)}{Ref(0)}, \ g_i(z) = \frac{f_i(z) - iImf_i(0)}{Ref_i(0)}, \ i = 1, 2.$$

Since

$$\frac{\epsilon+z}{\epsilon-z} \in \mathbf{EP} \text{ and } g_i \in \mathbf{P}$$

then

$$\frac{\epsilon+z}{\epsilon-z}=g_1(z)=g_2(z) \text{ in } U.$$

From the identity Theorem and the restrictions $f(z_0) = f_1(z_0) = f_2(z_0) = c$, we obtain $f = f_2$ and hence $f \in EP(z_0, c, D)$.

REFERENCES

1. HOLLAND, F. The extreme points of a class of functions with positive real part. <u>Math.</u> <u>Ann.</u> 202, 85-87, (1973).