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ABSTRACT. Let U be the unit disk, D D U an open connected set and zo E D. Let also

P(zo, c, D) be the class of holomorphic functions in D for which f(zo) c and Ref(z) > 0 in U.
We find the extreme points of the class P(z0, c, D).
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I. INTRODUCTION.
Let U be the unit disk {z :lz] < 1}, D D U an open connected set, z0 E D and H(D) be the

class of holomorphic functions in D. By P(zo, c, D) we denote the class of the functions f E H(D)
for which f(zo) c and Ref(z) > 0 in U. Let EP(zo,c,D) be the subclass of the extreme points
of the above class for P P(0, 1, U) it has proven [1] that

EP {(e + z)(e z)-1 "E ( 0V D},

In this paper we find the points of the subclass EP(zo, c, D).
2. MAIN RESULT.

THEOREM. (i) If (1 -]zol)Rec _< 0 then EP(zo, e, D) 0.
f EP (zo, c, D) if[ it has the form

(ii) If (1 --Izol)Rec > 0 then

f(z) xl( + z)+ ix2

where OU O x Rec[Re(+= )] -1 and z2 Imc- x, Ira(--+-)E--gO (;--gO

PROOF. Let f e P(zo,c,D) th f(z) a,z" h U. t o r < 1, S acomplex
n=O

amber d M > 0 ch that 0 < 21Sl < M d z OU. Since

1
(Sz + z-[1 4- )]Ref(rz) > 0

then

RV(.z) : (S() +-,.,..z.- + o)] (:).

By the maximum principle for harmonic functions it follows that (1) holds for every z E U.
Therefore for r 1 we have Re(f(z) 4- ui(z)) > 0 in U where

u(z) --’z-l(f(z) so) 4- oZ 4- Szf(z)] (2)
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Choosing appropriate S :/: 0 we get Reu1(zo) 0. Setting u(z) u(z)- ilmu(zo) from

u(zo) 0 it follows that f + u E P(zo,c,D).
Let now f EP(zo,c,D). Then it is obvious that u(z) 0 in D. If we set S JSJei(’+)

then from equality u 0 we conclude that f has the form

f(z) 1(1 -I- z2e2i) -q- 2zei
(1 ze2) "+ i3

1( + 2,,1 + ell’z) +-)( 1 eiz ( )(
1 + eiz

where ,, Cs .
We now prove that ICzl . om the Catheodory’ s uality we ve If(0)l

d hence Il 5 a. I=1 < x men mere e, ,d Reu (zo) O, where

u’(z) _(1 + e’z)+ (1-e’z)
i e’’z 1 + e’Oz

Setting u*(z) u*(z)- ilmu(zo) then f + u"
_

P(zo,c,D). Since f . EP(zo,c,D) it follows
that u" 0 and hence ’ 0. Therefore if f EP(zo, e, D) then I1- z and hence f
ha the form

I(z) ,(’ +_._z)+ i,:,r, > o,: c #, e ou- D. (4)

From (4) we have

;r, Rec[Re( + zo
,- zo)] > 0 and hence (1 -Izol) > 0.

Let f E P(zo,c, D) and having the form (4). Let also 0 < A < 1 and f],f2 - EP(zo,c,D)
such that f Afl (i A)f2. Then

A’g(z) + (1 A)g(z) in U,

where

Since

then

Ref(O) fi(z) ilmfi(O)
1,2.A" A

Ref(O)
gi(z)

Refi(O)

EP and gi P

e+z
() g() i. u.

From the identity Theorem and the restrictions f(z0) f1(zo) f(zo) c, we obtain
and hence f EP(zo, c, D).
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