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ABSTRACT. In this paper we describe the computations done by the authors in determining the

dimension of the boundary of the Lvy Dragon. A general theory was developed for calculating the

dimension of a self-similar tile and the theory was applied to this particular set. The computations were

challenging It seemed that a matrix which was 25 25 would have to be analyzed. It was possible to

reduce the analysis to a 752 x 752 matrix. At last it was seen that if A was the largest eigenvalue of a

certain 734 734 matrix, then dimH(K) Perron-Frobenius theory played an important role

in analyzing this matrix.
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1. INTRODUCTION
Self-similar sets have become an important area of research. They are not only interesting geometric

figures, but they have also proved to be useful in image compression and storage ], [2], and [3]. It is

possible that those self-similar sets that are tiles might play an important role in image compression in the

future. So, these sets deserve to be studied in some detail. The work summarized here is an attempt to

extend what is known about these sets.

Figure 1. The Dragon
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In [4], P L6vy studied the complex curve which has come to be known as the Lvy Dragon He

showed that the Dragon is self-similar, and argued that the plane can be tiled by copies of it L6vy’s paper

is a tour de force on this subject It is amazing that he was able to determine so many propertms of this

and other curves in [4] without the use ofmodem computers

Although L6vy found many properties of the Levy Dragon, he did not compute the Hausdorff

dimension of its boundary. In [5, page 236] G Edgar asks whether the dimension of the boundary ofthe

Dragon is greater than one In a previous paper [6] we answered that question in the affirmative and in

fact determined a precise value for this dimension. In the process of doing this we developed a general

theory for computing the Hausdorffdimension ofthe boundary of self-similar fractal tiles

The L6vy Dragon is the attractor for the IFSF {I’1, f2}, where 1’1 and f2 are similitudes of

Euclidean space R given by

fl(x,y) (x-y x +y)2 2

f2(x,y)= (x+y+l y-x+l)2 2

Much that we discovered about the Dragon holds in a broader setting So, it is appropriate to have

fairly general notational conventions. The Hausdorff dimension of a set E is denoted by dimnE, and the

’lower and upper box-counting dimensions ofE are denoted by dimsE and d-sE. Definitions of these

dimension functions can be found in [7], [8] and [9].
Let 12 denote the collection of sequences I {il, i2,---} with i { 1, 2,---, n}. 12 will denote the

set of sequences of length k with entries from { 1, 2,.--, n}. 12 has the natural metric given by

f 1, if’il :/: jld(I, J) c, c.--c,,, if i j for k < m and im+l

For I 12, we let I denote the finite sequence {il,i2,...,i}, and will often use the shorthand fh for

the composition f,a f,---f, and ch for the product c, c--.c, We will also need the maps a

and g" f2 K given by a(il, i, ...) {i2, i3, ...} and g(I) lira f,t f,’" "f, (x) It is not difficult to
k---*oo

see that g(I) is independent of the choice of x X. The map a is the well-known shift map on the

sequence space

2. SUB-SELF-SIMILAR SETS
In [7], Falconer gave an (abstract) way to determine the dimension of sub-self-similar sets Given a

set F fl, f2,"’, fn } of contracting similitudes on Rt, the closed set E is said to be sub-self-similar
for F ifE C I,.J,lf,(E). It follows that E C K, where K is the attractor for F. Note in particular that

the topological boundary OK ofK is s.s.s., since the interior int K ofK is mapped imo itself by each of

the open mappings f,. The first crucial observation about s.s.s, sets is

PROPOSITION 2.1. Let E be a closed set. Then E is s.s.s, for F if and only if E g(A) for

some compact set A C f2 such that a(A) C A. Furthermore, if E is s.s.s., such a set A is given by

A {I flg(a (I)) E for all k _> 0}.
The set A in Proposition 2.1 is fundamental in the calculation of dimnE. For k > 0, let Ak be the

set of finite sequences obtained by truncating elements ofA after k terms. For s > 0 definite

Recall that F satisfies the open set condition 10] ifthere is a bounded nonempty open set U such that
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U/,(u) c u, ana

l, (V) l;(V) , if # j.

THEOREM 2.2. Let E be a closed set which is s.s.s, with respect to the family {fl, f2, "-’, f,} of

contracting similitudes which satisfies the open set condition. Let s be the number satisfying -(s) 1

Then 8 dimnE dirnBE dimBE.

3. BOUNDARIES OF ATTRACTORS
One obvious difficulty in applying Theorem 2.2 is that one has to sum over finite sequences

determined by an infinite condition It was important to show that membership in A can be determined

from finite data

PROPOSITION 3.1. Ak {I 6_ fklfI (K) N OK :fi 0}
Once we had Proposition 3.1 we had a strategy for computing dimnOK. Suppose for convenience

that the c, all have the same value c, and suppose that we can determine cr lira [Ak[ /’, where

denotes the cardinality ofthe set S. Then

Thus dimncgK is the solution to ac 1, or

dimnOK
In(a)
In(c)

4. THE LIVY DRAGON
We now revert to letting K denote the IMvy Dragon with its IFS{f],f2} Lvy [4] showed,

among other things, that K tiles the plane in the sense that the plane can be written as the union of

congruent copies ofK that meet only in their boundaries.

Let S be the unit square with vertices {(0, 0), (0,1), (1,1), (1, 0)} and let To C S be the triangle

with vertices { (0, 0), (1/2,1/2), (1, 0)}. L6vy viewed K as lira F’(To).
k--oo

Figure 2. To and its Neighborhood
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S is the union of four triangles in S with hypotenuse an edge of S and third vertex at (1/2, 1/2)
We denote the triangulation ofR consisting of these triangles and their integral translates by To To and

its neighborhood in To are shown in Figure 2 If T is a right triangle in the plane, we refer to the vertex

opposite the hypotenuse as the top vertex of T, and the other vertices as left and rght so that we

encounter the vertices in the order left, top, and fight as we traverse the boundary in clockwise order

The left (rght) edge of T is the edge determined by the left (fight) and top vertices of T The

triangulation To has a subdivision T obtained by subdividing each triangle T into the two triangles

determined by the lef (fight) edge of T and the midpoint of the hypotenuse of T Continuing in the

obvious way gives a sequence To - T -.-- - Tk --.. of subdivisions of R into fight isoceles

triangles. Each triangle in T has diameter For each T T, let Tr be the triangle in /

whose hypotenuse is the left edge ofT and which has a vertex outside of T. Define T similarly. One
can easily see that F(T0) T0 U T0. In fact, the following proposition is immediate

PROPOSITION 4.1. For each > O, F(To) is a union of 2 triangles in T. F+(To) is

obtained from F (To) by replacing each T in F (To) by T and T
We used the formula at the end of Section 3 to compute the Hausdorff dimension of OK The

difficulty that we encountered was that K and OK are very complicated objects, and we can only see

finite approximations to them, so it was not clear how to compute A What we were able to work with

was

Bk (Ik e ak If, (To) i)Fk (To) =fi 0 }.

Then we were able to determine the relationship between Ak and Bk to complete the calculation

\

/

Figure 3 The Ndghborhood Ordering

One of the difficulties in dealing with K is that it is not easy to locate points in the interior ofK by

looking at Fk (T0). One needs to find objects ofpositive area which persist from iteration to the next, but

as soon as a triangle T appears at one level, its interior is discarded at the next level and is replaced by
two triangles exterior to T. It is not until the iterations have become sufficiently intertwined to create

covered triangles that the discarded mass is filled back in by adjacent triangles Through computer

experimentation we discovered that covered triangles do not exist until the 14th iteration, and only 8 of

the 214 triangles that comprise FI4(To) are covered! However, ira triangle T E Tk is covered, then T is

the union of two triangles in Tk+l which are also covered. It follows that intT C Fk+"’(To) for all

m > 0, so that int T C int K.
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Figure 4. Ns and FSTo

PROPOSITION 4.2. Bk C

It follows that [Bk[ <_ [Ak[ We also used the fact that at each stage F (I) is a tiling ofR So, in

using B two ways, we were able to determine lower and upper bounds for dimHoaK which were the

same number thus giving us a complete determination ofthis dimension Let/3 lira IBm[ 1/

TIIEOREM 4.3.

n(/)

5. COMPUTATIONAL ISSUES
In the light of Theorem 4.3, our goal was to understand the asymptotic behavior of the number [Bk[

of triangles in Fk(To) which are not covered. To this end, we needed to study the neighborhood

structures introduced in Section 4. In order to keep track of the number of neighborhood types at each

stage in Fk (To) we needed a matrix which was 215 x 215 However, by experimenting with this matrix,

we found that we could reduce it to a smaller 734 x 734 matrix with nonnegative integer entries which

was irreducible Perron-Frobenius theory was used to determine that there was a unique largest

eigenvalue A to this matrix. This eigenvalue determined the cardinality of [Bk[ to be Ak asymptotically
This allowed us to compute the dimension of the boundary of the Lrwj Dragon We were able to

determine precise bounds for A using integer arithmetic and also determine as estimate for A to high

precision using the power method.

By Section 4,

In(A)
dimn,OK ln(v/)

Floating point computations using the power method give the estimate A 1.934007183 The

rigorous estimate that we obtained using integer arithmetic was 1.824190 < A < 1.974189. This last

estimate proved that A was greater than V/, and that the Hausdorff dimension of oak is greater than 1

Thus, the boundary of the Dragon has Hausdorff dimension greater than 1, and Edgar’s question was

answered in the affirmative.
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