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ABSTRACT. Some common fixed point theorems for compatible mappings are shown As an
application, the existence and uniqueness of common solutions for a class of functional equations arising
in dynamic programmings are discussed.
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1. INTRODUCTION

In [1] the concept of compatible mappings was introduced as a generalization of commuting
mappings and further investigation was given in [2-9]

The purpose of this paper is to prove some common fixed point theorems for compatible mappings,
which generalized some recent results of [4, 10-13] As an application, we use the results presented to
study the existence and uniqueness problem of a common solution for a class of functional equations
arising in dynamic programmings, which generalized the corresponding results of [14,15].

2. FIXED POINT THEOREMS ,

DEFINITION 2.1. Self mappings A and S of a metric space (X,d) are called compatible, if
lim,d(ASz,,SAz,) = 0 whenever {z,} is a sequence in X such that lim, Az, = lim, Sz, =t for
sometin X

It is clear that commuting mappings and weakly commuting mappings are all compatible mappings,
but the converse is false (see [1, 4]).

LEMMA 2.2 [14] If A and S are compatible self mappings of a metric space (X,d) and
lim,Sz, = lim, Az, = t for some ¢ in X, then lim, ASz, = St if S is continuous.

The following theorem can be obtained from Theorem 8 in [16].

THEOREM 2.3. Let (X,d) be a complete metric space and A, B, S and T are self mappings of
X. Suppose that S and T are continuous, A(X) C T(X), B(X) C S(X), and that A, S and B, T are
compatible and satisfy the following condition:

d(Az, By) < ®(max{d(Sz,Ty),d(Sz, Az),d(Ty, By),

% [d(Sz, By) + d(Ty, Az)]}),Vz,y € X, e@n

where & : [0, 00) — [0, 00) is nondecreasing, upper semicontinuous and ®(t) < t forallt > 0
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Then A, B, S and T have a unique common fixed point in X

We merely state the proof for convenience

PROOF. Since A(X) C T(X) and B(X) C S(X), we can choose a sequence {z,} in X such that
Sz3, = BZon_1 and Txy,_; = Azg,_ for all m in the set N of all positive integers Let

Yon-1 = Txgn_1 = ATy, 9
Yon = Sz?n = Bz2n—1

}@em. 22)

As in [10], we can prove that {y,} is a Cauchy sequence in X Letting y, — y. € X (n — 00), we
know that {ys.} and {yo,_1} converge to y. too.

Since A and S, B and T are both compatible, it follows from the continuity of S and T, (2.2) and
Lemma 2.2 that

Tyon-1 = Ty, Bysn-1 — Ty., Syon — Sy., Ayen — Sy.. 23)

By (2.1) and (2.2) we have
d(Ay2m By‘Zn—l) < ‘b(max{d(sy%n Ty?n—l)v d(Sy2m Aan),
1
d(Ty2n-1, Byan-1), 3 [d(Sy2n, Byen-1) + d(Tyan—1, Ayen)]}).

By the upper semicontinuity of $(t) and (2.3) we have
d(Sy., Ty.) < ®(max{d(Sy.,Ty.),0,0,d(Sy., Ty.)})
This implies that Sy. = Ty.
Similarly, from (2.1), (2.2) and (2.3) we can obtain
Sy. = By., Ty. = Ay..

Hence we have
Ay. = By, = Sy. = Ty.. 249

From (2.1) and (2.2) we have
d(A:cg,,, By,) S @(max{d(Szg,., T'y.), d(Szz,,, AIQ,,),
1
d(Ty‘y By')) 5 [d(sz%n By') + d(Tytv Axgn)]}),

and then
d(y., By.) < ®(d(y., By.)).

Hence we have y, = By. = Ay. = Sy. = Ty.

The uniqueness is obvious. This completes the proof.

DEFINITION 2.4. A metric space (X, d) is (metrical) convex, if for each z,y € X with z # y,
there exists a z € X, z # z # y, such that

d(z, z) +d(z,y) = d(z,y).
LEMMA 2.5 [17]. Let K be a closed subset of a complete convex metric space X. If z € K and
y ¢ K, then there exists a point z € K such that
d(z, z) + d(z,y) = d(z,y).
DEFINITION 2.6. Let (X,d) be a metric space, K C X and A,S: K — X. The pair of

mappings A and S is called compatible, if lim, d(ASz,, SAz,) = 0 whenever {z,} is a sequence in K
such that Az,, Sz, € K and lim, Az, = lim, Sz, =t € K
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LEMMA 2.7. Let (X,d) be a metric space, K C X and A,S: K - X If A and S are
compatible mappings, Az,, Sz, € K and lim, Az, =lim, Sz, =t for some t€ K, then
lim, ASz, = St if S is continuous.

PROOF. 1t is obvious from Definition 2 6

THEOREM 2.8. Let (X, d) be a complete convex metric space and K a nonempty closed subset of
X Suppose that S and T are continuous mappings from X into X with 0K C S(K)NT(K) and that
A,B: K — X are continuous mappings with A(K)NK C S(K), B(K)NK C T(K) Suppose
further that the pairs of mappings A, T and B, S are compatible and satisfying

d(Az, By) < ®(d(Tz, Sy)),Vz,y € K, 253)
where & : [0,00) — [0, 00) is nondecreasing upper semi-continuous and y_ ®"(t) < oo forall t > 0

If forz € K, Tz € 8K implies Az, Bz € K and Sz € 8K implies Az, Bz € K, then there exists

a z € K such that
z2=Tz=82= Az = Bz.

IfTv=Sv=Av=Bv,thenTz=Tv

PROOF. Let p€ K. Using Lemma 2 5 and the proof of [11] we can choose two sequences
{Pn}nen and {p)},.n such that for any n €N, p, € K, gy, = Apon, , = Bmn1 and the
following implications hold-

If p5, € K, then py, = T'pa,, if 5, € K, then T'pp, € OK and

d(spln—h TpZn) + d(TPZny Bp2n—l) = d(SPZn—lv Bp2n~l)

@

) Ifph,.q € K, then pb, 1 = SPons1, if Ponyy € K, then Spynyy € 0K and
d(Tpan, SP2ns1) + d(SpZn-Hv Apon) = d(Tp2n, AP2n)
Further, as in [3] we can prove that
d(Tpon, Spzns1) < @771 (r) }
N), 2.6
d(SPrn+1, TPons2) < 7(r) (neN) 26)
where r = max{d(Tpy, Sp3),d(Tp2,Sp1)}-
This implies that for any n € N,

d(Tpan, TPrns2) < "71(r) + @7(r).
Hence the sequence {Tp;,},.cn is 2 Cauchy sequence. Since X is complete and K is closed, it follows
that there exists a z € K such that z = lim, Tpy, From (2 6) we have
z=1limTp, = limSpon.1-

Now we prove that z = Tz = Sz = Az = Bz It is obvious that there exists a sequence {nx} C N
such that T'py,,, = Bpan,—1, OF SPon,—1 = Ap2n,—2, ¥k € N. Without loss of generality, we can suppose
that T'pep, = Bp2n,-1,Vk € N From (2.5) we have

d(STpon,, Az) < d(SBpan,—1, BSPan,-1) + d(BSp2n,-1, Az2)
< d(SBPZm—ly BSPZN‘I) + Q(d(SSPng—lv Tz)).

Since B, S are compatible and S is continuous, we have
d(Sz,Az) < ®(d(Sz,Tz)). 27

From (2.5) we have
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d(Ap?nk ’ TPan) = d(APZm,r BPan—l)
< @(d(Sp2ni-1, TP2ny))-
By the upper semi-continuity of &(¢), it follows that
lim Apyn, = z. (283)

Using (2.5) we have
d(Apan,, BSpan,-1) < ®(d(TP2n,r SSP2n,-1)-

Since B, S are compatible and S is continuous, it follows from (2.8) and Lemma 2 7 that
d(z,Sz) < ®(d(2,52)).

This implies that d(z,Sz) = 0,ie. 2 = Sz.
Since A, T are compatible and A and T are continuous, from (2.8) and Lemma 2.7 we have
Az = lilr‘n ATpy,, =Tz.

In view of (2.7) we have
d(5z,Tz) < ®(d(Sz,Tz))

and so
z2=82=Tz= A=z.

Besides, from (2.5) we have
d(Az,Bz) < ®(d(S2,Tz)) = ®(0) =0.

Hence
2=Tz=82= Az = Bz.

Finally, if Tv = Sv = Av = Bu, then
d(Tv,Sz) = d(Av, Bz) < ¥(d(Sz,Tv))

andso Tv= Sz =Tz

This completes the proof of Theorem 2 8.

As an immediate consequence we can obtain the following result.

THEOREM 2.9. Let (X,d) be a complete convex metric space, X a nonempty closed subset
of X, and S and T continuous mappings from X into X such that 8K C S(K)NT(K). Suppose
that for every n€N, A,: K — X is a continuous mapping with Ao, (K)NK C T(K) and
Agn-1(K)N K C S(K), and that the pairs of mappings Az,—1,T and Aq,,S are compatible such that
foranyn € N

d(Anz, Ans1y) < 8(d(Tz, Sy)),Vz,y € K,

where &(t) is the same as in Theorem 2.8.
Ifforeveryn e Nand r € K,

Tz € K implies A,z € K and Sz € 0K implies A,z € K,

then there exists a z € K such that
z2=T2=82=A,2, VYneN,

and if Tv = Sv = A,vforeveryn € N, then Tz = Tw.
REMARK 2.10. Theorem 2.9 is a generalization of Theorem 1 in [11]
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3. APPLICATIONS
Throughout this section we assume that X and Y are Banach spaces, S C X is a state space, D C Y
a decision space and R = (— 00, +00) We denote by B(S) the set of all bounded real-valued
functions defined on S.
As suggested in Bellman and Lee [18], the basic form of the functional equations of dynamic
programming is
f(z) = optyH(z,y, f(T(z,y))),

where z and y represent the state and decision vectors respectively, T represents the transformation of
the process, and f(z) represents the optimal return function with initial state z (here opt denotes max or
min)

In this section, we shall study the existence and uniqueness of a common solution of the following
functional equations arising in dynamic programmings

f(z) =sup Hy(z,y, f(T(z,y))), z€S, (€R))
yeD

9(z) = sugHz(z,y, 9(T(z,y))), z€S, (32
i3

p(z) =sup Fi(z,y,p(T(z,y))), z€S, (33)
yeD

q(z) = sup Fa(z,4,9(T(z,y))), z €S, (34)
yeD

whereT:SxD— S HandF,:SxDxR—-R,i=1,2.
THEOREM 3.1. Suppose that the following conditions are satisfied'
(i) H, and F, are bounded, i = 1, 2.
(i) |Hi(z,y, h(t)) — Ha(z,y, k(t))] < @(max{|Tih(t) — Tok(2)],
[Tyh(t) — A1h(t)], [Tok(t) — Agk(t), 3 [T1A(E) — A2k(t)| + T2k (t) ~ A1R()I]}),
for all (z,y) € S x D,h,k € B(S) and t € S, where & is the same as in Theorem 2 3, and the mappings
A, and T, are defined as follows-

Ah(z) = sup H,(z,y,h(T(z,y))), z€S, he€B(S) and
yeD

T.k(z) = sup F,(z,y,k(T(z,y))), €S, ke€B(S),  i=12.
yeD

(iif) For any {k,} C B(S) and k € B(S),
limsup |k, (z) — k(z)| =0 implies limsup|T,k,(z) — T,k(z)| =0, i=1,2.
n zeS " zeS

(iv) For any h € B(S), there exist k1, ks € B(S) such that
Aih(z) = Toki(z), Aoh(z)=Tike(z), z€S.
(v) For any {k,} C B(S), if there exists k € B(S) such that
limsup |A,k,(z) — h(z)| = limsup |T;k,(z) — h(z)| = 0,
T zeS ™ zeS

then
limsup |A. T k. (z) — T,Akn(2)| =0, i=1,2.
™ ze$

Then the system of functional equations (3.1)-(3.4) has a unique common solution in B(S).
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PROOF. For any h, k € B(S), let
d(h, k) = sup{|h(z) - k(z)| : z € S},

then (B(S), d) is a complete metric space From (i)-(v) we know that A, and T, are self mappings of
B(S), T, are continuous, A;(B(S)) C Tz(B(S)), A2(B(S)) C T1(B(S)), and the pair of mappings
A,, T, are compatible, i = 1,2.

Let Ay, ho be any two points of B(S), let z € S and 7 be any positive number, there exist y;, and y,
in D such that

Ak (z) < H(z, 9, hi(z,) +10) . _
where z, = T(z,y,) } E=12). 35
Also we have
Aihy(z) > Hi(z,y2, b1 (22)), (36
Agho(z) > Hy(x, 1, ha(21)). (€))

From (3.5), (3 7) and (ii) we have
Arhi(z) — Agho(z) < Hi(z,y1, hi(z1)) — Ha(z, 91, ho(z1)) + 1
< |Hi(z,y1, h1(z1)) — He(, 91, ha(z1)) +1
< ®(max{|T1hi(z1) — Toho(z1)|, [T1h1 (1) = Arhi(z1)],
(Tiha(@) = Asha(@)l, 3 [Tis (@) = Ashalen)]

+ |Teha(z1) — Arha(z0)l]}) +1
S <I>(ma.x{d(T1h1,T2h2),d(T1h1,Alhl),

1
d(Tahy, Azhg), 3 (d(T1h1, Azhs)
+d(Tahy, A1hy)]}) + 1.

Similarly from (3.5), (3.6) and (ii) we have
Arhi(z) = Asho(z) 2 — @(max{d(Tihy, Tohe), d(Tih1, Arhy),
d(Tphe, Aohy), % [d(T1h1, Aghy)
+ d(Tohe, Arh1)]}) — .

Hence we have
|A1h1(z) — Agho(z)] < ®(max{d(Tih1, Toho), d(Tihy, Ajhy),
d(Toh, Agha), 5 [d(Tih, Aha) 8
+d(Taho, A1h1)]}) + 1.

Since (3.8) is true for any z € S and 7 is any positive number, we have
d(A1hy, Aghy) < ®(max{d(T1 k1, Tohe),d(T1 Ry, A1hy),
d(Tyho, Aghs), % [d(T1h1, A2hy),
+ d(Tzhe, A1h1)]}).

Therefore by Theorem 2.3, A;, A2, T} and T; have a unique common fixed point h* € B(S), i.e h*(z)
is a unique common solution of functional equations (3.1) - (3.4). This completes the proof.
The following result is an immediate consequence of Theorem 2.3 and Theorem 3 1
THEOREM 3.2. Suppose that the following conditions are satisfied:
(i) H;isbounded,i=1,2;
(i) [Hi(z,y,h(t)) — Ha(z,y, k()| < ®(max{|h(t) - k)], |h(t) — A1h(?)],
k(t) = Agk(t)], 7 [IR(t) — A2k(t)] + k() — Ath(1)]})
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for all (z,y) € S x D,h,k € B(S) and t € S, where ® is the same as in Theorem 2 3 and A, is defined
by
Ah(z) =sup H,(z,y,h(T(z,y))), z€S, heB(S), i=1,2.
yeD

Then the functional equations (3.1) and (3.2) have a unique common solution in B(S)
REMARK 3.3. Theorem 3.2 is a generalization of Theorem 2.1 in [15].
THEOREM 3.4. Suppose that the following conditions are satisfied.
(i) H, and F, are bounded, i = 1,2,
(ii) |H(z,y, h(t)) — Ha(z,y, k(t))| < ®(|T1h(t) — T2k(t)|) for all (z,y) € S x D, h,k € B(S)
and t € S, where & is the same as in Theorem 2.8 and T, is defined as in Theorem3 1,i =1, 2;
(iii) For any {k,} C B(S) and k € B(S),
limsup |k, (x) — k(z)] = 0 implies limsup |T,k,(z) — T,k(z)| =0
n zeS§ n zeS

and
limsup |A,k,(z) — Ak(z)] =0, i=1,2,
n zeS

where A, is defined as in Theorem 3.1, =1,2;
(iv) For any i € B(S) such that sup,cs|h(z)| = 1, there exist k;, ks € B(S) such that

sup |k,(z)| <1 and Tk(z)=h(z), €S, i=12
z€$

(v) For any h € B(S) such that sup,cs |h(z)| < 1, there exist k1, ko € B(S) such that
sup|ki(z)| <1, i=1,2, Ajh(z)=Toki(z) and Ash(z) =Tiky(z), z€S;
ze$

(vi) For any h € B(S) such that sup,¢s |h(z)] < 1,
sup |Th(z)| =1 implies sup|Ah(z)] <1, 4,j=1,2
ze$ zeS

(vii) For any {k,} C B(S), if there exists h € B(S) such that sup,cs |T;k.(z)] < 1 and
limsup | A,k (z) — h(z)| = limsup |Tk.(z) — h(z)| = 0,
" zeS " zeS

then
limsup | A, T,k (z) — T,Aka(z)] =0, i=1,2.
n ze§S

Then the system of functional equations (3 1) - (3.4) have a unique common solution h* € B(S) and
Supzes|h®(z)| < 1.

PROOF. Let us consider B(S) as a Banach space of all bounded real-valued functions defined on S
with a supremum norm, and K the closed unit ball in B(S). By conditions (i)-(vii) we know that
A,: K — B(S)and T, : B(S) — B(S), i = 1,2, satisfy all of the conditions of Theorem 2.8 and have
a unique common fixed point h* € K, i.e, h*(z) is a unique common solution of functional equations
(3.1)-(34).

REMARK 3.5. Theorem 3 4 is a generalization of Theorem 3.2 in [14].
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