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ABSTRACT. The limit set of the Kleinian group of a given doubly periodic Riccati equation is proved
to have a fractal structure if the parameter 6(A) of the equation is greater than 3 + 2x/, and a possible
Hausdorff dimension is suggested to the limit set
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It is well known that the limit sets of many nonlinear autonomous systems have fractal structures

(see [1][2][3]) However, it is very difficult to verify the fractal structure analytically and exactly for a

given system, since the nonlinear autonomous system is usually not integrable by traditional quadratures
In [4] and [5] the periodic solutions and the structures of Riemann surfaces of solutions to a doubly

periodic Riccati equation are discussed, and the monodromy group (a Kleinian group (see [6])) of the

equation is established concretely for the study of the structure of the limit set of the solution space, and

it is conjectured that the limit set has a fractal structure under certain conditions In this paper, this

conjecture will be proved by means ofthe Kleinian group Some relevant conceptions and known results

will be introduced at first for convenience

Consider the Riccati equation

d z(t + (t) ()
dt

where

t c, /,

and 8(t) is a Weierstrass elliptic function satisfying the following equation

[$’(t)] 4[9(t)- lie(t)

with the initial condition (0) 0. 8 (t) has two periods

3

and
w2 2ci.

As a global analytic function (see [7]), a solution of equation (1) is usually multiple-valued It is

proved in [5] that (1) has two particular solutions z,. (t) and z,2(t), which have respectively single-valued

and analytical periodic branches rl (t) and L2 (t) with the period 2cr in the strip region

D {tlllm(t)l < },
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and that (1) has two other particular solutions z: (t) and z, (t), which have respectively single-valued and
analytical periodic branches , (t) and (t) with the period 2i in the strip region

D’= {t lRe(t)l < c}.

Since p(t) is doubly periodic, equation (1) can be rewritten as an autonomous system

z +- ,,,(o) o,
where

(z,a)
_
" x T,

(2)

and T is the two dimensional toms with a point like hole P0 corresponding to the pole of p(t) at

t=(2m+l)a+(2n+l)ai, (m,n) EZ9.

Let zt (a) represent a local solution of (2) defined in the open region

{alRe(a) (-c,a),Im(a) (- c,a)},

with the iti value zt (0)
A glob solution zt(a) of system (2) is still mutiple-vued. The emn surface of zat(a) c

be treated as the phase surface of the ob solution imbedded in x So zt(0), wch is a set of

itelyy loc values zt(O) C, is coesponding to the interseion set between the emn
surface ofzg(a) d the phase ple a 0 For convenience, we introduce the trsfomation

z(O) ,(o)
,(o)- ,(o)

which transforms the initial value zto (0) into the value c. Therefore every value c t is corresponding
to a definite local solution zo(a) of the initial value zto(0). This correspondence reflects some

important topological properties ofthe solution space of (2) to the extended (7 plane For instance, if the
local solution sequence {zto.,(a)} converges to a local solution zto.0(a), then their corresponding c-

value sequence {c,} converges to the c-value co of zto.0(a), and vice versa. The monodromy group of
the system (2) a Kleinian group G (see [6]) has two generators E and U E is corresponding to an

analytical continuation transformation, which continues a local solution corresponding to any given c-

value c t along the direction of the latitude of T0 (or the direction of the real axis of the C-plane) for

a lap to the new local solution corresponding to the c-value E(c), and U,is corresponding to the

transformation, which continues analytically a local solution of the c-value c (7 along the direction of
the longitude of T0 (or the direction of the imaginary axis of the (7-plane) for a lap to the new local

solution ofthe c-value U (c) In [5] we obtained that

E(C) &,
U ((::) ,(6-1/+(6+1)c (3)

(,5+1)-,(-)c,

where

(.) exp [5 (t) 5, (t)]dt.

Since A E R/, (t) > (t) for all R, and therefore, (A) (1, + eo) Based on the result in

[$], it can be proved that (A) is a continuous and monotone increasing function in A and that

lim--,0 (A) 1,
lim.+,(A) +

An element ofthe group G can be represented as

U"EU,,-E,- ...U, E’,
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where m,, n, 6 Z for 1, 2, k Clearly, g is a Mobius transformation on Let

C+ {c c 6 ,Im(c) > 0},
C- { I 6 ,Im(c) < 0},
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In fact, C is the extended imaginary axis It is easy to check that for any g 6 G,

(C+)=c/, (C-)=C-, (C,)=C,.

Therefore, O-, C- and C, are G-invariant

Assume that co is the c-value of a given local solution Zto,:.o(a), then the set of the c-values of all the

local solutions obtained from Zto.0(a) by continuation can be represented as

S(o) {9(co) 19 G}.

The c-values of the local periodic solutions r, (t), r2 (t), "q (t) and ,2 (t) are respectively 0, c, and

(see [5]) For given A E R+, let V(A) be the union of sets

v() s(o)Us(oo)Us()Us(- ).

The following is the main theorem ofthis paper.

THEOREM. If
5(A) > 3 + 2V/,

(the numerical work shows that 6(0.227) 3 + 2v/ ), then V(A), which is the limit set of the Kleinian

group G of the system (2), is a totally disconnected (or thin) and perfect subset of C,, or in other words,

G is a non-elementary Fuchsian group of the second kind (ref [9]), and according to a consideration on

similarities, its Hausdorff dimension can be evaluated as

In 3
Df (V---) InS(A)"

The proofof this theorem can be completed by verifying the following facts and propositions

FACT 1. C, is a one-dimensional manifold homeomorphic to the unit circle There exist two kinds

of natural symmetries

(i) if x, y E U, and x y, then they are said to be symmetric to each other with respect to the

points 0 and c;
(ii) ifz, y 6 U, and Ira(z) T’, then they are said to be symmetric to each other with respect

to the points and

Obviously, and -i are symmetric with respect to 0 and c, and 0 and c are symmetric with

respect to and (see Figure 1).

Figure 1. (7, and its natural symmetries.
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PROPOSITION 1. On the subset C, the transform E preserves the symmetry with respect to 0

and c, e, E(z) and E(y) are symmetric with respect to 0 and oo ifx and y are symmetric with respect
to 0 and c, and the transformation U preserves the symmetry with respect to and

PROPOSITION 2. When

/> +/,
if let

1 a6J,a= - [(6-1)- V/(6 1)

then 0 < a </3 < 1, and under the action of any g E G, on C,, the points,

and the open interval,

I0 (7il7 E (a,/)}

are changed respectively into the points g(ul) and g(u2) and into the open imerval g(Io) between g(ul)
,and g(u2 Especially,

1 1
E(I) 6u ’ E(Td,2) 6,0, --U-I(ztl) ,t/,2, U-1(7./,2)

U-I(E(Ul)) E(u2), U-I(E(u2)) -Z(ul).
And the intervals I0 and U-(Io) are symmetric with respect to 0 and oo, the intervals E(Io) and

U-I(E(Io)) are symmetric with respect to 0 and oo, the intervals I0 and E(Io) are symmetric with

respect to and i, and the intervals U- (I0) and U-1 (E(I0)) are symmetric with respect to and

Let

0- IoUE(Io)UU-I(E(Io)),
F=C,\O.

FACT 2. The closed set F is formed with four separated closed intervals F0, Foo, F and F_,, and

the points 0, o, and are locat on them as their symmetric centers respectively (see Figure 2)

Figure 2. The open intervals Io, E Io ), U Io ), U (E Io ), and the

closed intervals Fo F F, F_, (6 8)
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and

PROPOSITION 3.

V(o Uzo U,Uo/U)= ,,

u-l (Fo U u-l([o) U12-, Uu-l(E(Io)) U Foo)

Let

F+, F, U F_,,

FACT 3. The family of transformations {E}Zo (note Z0 is the set of non-zero integers)
change F+, to a family of separated closed intervals in F0,, and 0 and oo are the accumulation points of
these intervals The family of transformation {Um}rezo change F0,oo to a family of separated closed

intervals in F+, and and are the accumulation points ofthese intervals

Let

Fo,o(1) U E(F+/-’)’
meZo

F+/-,(1) U U"(Fo.oo).
meZo

And for any positive integer n > 1, we may define inductively that

Fo.oo(n) U E’(F+’(n 1)),
eZo

and that

,() U v(o,( )).
rneZo

FACT 4. The closed set Fo,oo(n)U F,(n) is formed with a series of separated closed intervals and

their accumulation points. The endpoints ofthese intervals belong to

s(,)Us(?),
and these accumulation points belong to

s(o)Us(oo)Us()Us ).

Let P(n) denote the set of the endpoints of these closed intervals and their accumulation points
mentioned in Fact 4.

PROPOSITION 4. For any n E N,

[Fo.o(n)UF+,(n)] D [Fo.oo(n + 1) UF+,(n + 1)],

P(n) C P(n + 1).

PROPOSITION 5. The set V(A), just like the Cantor set, is constructed as the intersection of the

monotone sequence of closed sets

n6N
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and is a totally disconnected (or thin) and perfect subset in C, And the subsets S(0), S(oo), S(i),
S( i), S(ul) and S(u2) are dense in V(A)

PROPOSITION 6. V(A) is the smallest non-empty G-invariant closed subset of C, and therefore it

is the limit set of the Kleinian group G, and G is a non-elementary Fuchsian group of the second kind

(ref [9])
FACT 5. From the construction ofthe set V(A) we see that it has the following self-similar laws

(i) The structure of V(A) F0 is similar to the structure of V(A)f"l F_,, and also to the structure

ofV(A) CI,,
(ii) E(V(A)Fo) [V(A)F_,] [J [V(A)F0] [.J [v---[’] F,]
Notice that the length of E(Fo) is times the length of F0, and the length of F_, or of F, is different

to the length of F0 So the self-similar laws of V(A) are a little complicated, and consequently, we

cannot define and calculate strictly its Hausdorff dimension according to the method used commonly
However, in loosening some requirements, we may have the following estimation

PROPOSITION 7. If the length difference between F+, and F0 is neglected, the Hausdol-ff

dimension of V(A) can be evaluated as
In 3zz (v--) . lne/

This completes the proof of the main theorem of this paper The structure of the set V(A) reflects

’the complexity ofthe limit set ofthe solution space of system (2) If the parameter

6(A) (1,3+ 2X/),
then the open interval I0 in Proposition 2 does not exist In this case, we may guess that V(A) C,, e,

G is a Fuchsian group ofthe first kind (ref [9]) Our numerical results seem to support the main theorem

and the conjecture
The fractal structure of the limit set of solution space is a kind of characters of non-integrable

equation systems. In fact, according to the results in 10], if the limit set of an autonomous system has a

fractal structures, then this system does not admit any nontrivial analytical Lie group in a relative large

region In this sense, this system is not integrable
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