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ABSTRACT: For a sequence-to-sequence transformation A, let PAx >, [(Am)hi and

i,Ax sup,,>, [(Ax),[. The purpose of this paper is to study the relationship between the

asymptotic equivalence of two sequences (lin x,/y, 1) and the variations of asymptotic

equivalence based on the ratios RAx/IAy and I,,.,Ax/.uAy.
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1. INTRODUCTION.
Let z (x) and y (y) be infinite sequences, and let A be a sequence-to-sequence

transformation. We write x y if lin z,.,/y,., 1. In order to compare rates of convergence

of sequences, in [2] Pobyvanets introduced the concept of asymptotically regular matrices,

which preserve the asymptotic equivalence of two nonnegative sequences, that is z y implies

Ax Ay. Furthermore, in [1] Fridy introduced new ways to compare rates by using the ratios

R.x/R.y, ,z/tmy when they tend to zero. In [2] Marouf studied the relationship of these

ratios when they have limit one. In the present study we investigate some further properties

involved with the ratios such iAx/IAy, RAx/RAy when they have limit one.

2. NOTATIONS AND BASIC THEOREMS.
For a summability transformation A, we use DA to denote the domain of A:

DA {x" , a,kzk converges for such n >_ 0}
k=0

and CA to denote the summability field:

CA {x x 6 DA, _, ankx converges.}
r=O k=O

Also

Ps={x’x,6>O forall n}

and

P {x’x,,>O forall n.}

For a sequence x in 1 or e, we also define Rmx ,>, Ix,[ and /mx sup.>. [xn[ for

We list the following results without proof.
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THEOREM 1. (Pobyvanets [2]). A nonnegative matrix A is asymptotically regular if and

only if for each fixed interger m, lim,_.oo a,,/,__o a,kO.

THEOREM 2. A matrix A is a Co-Co matrix (i.e. A preserves zero limits) if and only if

(a) lim_oo ak 0 for k 0, 1,2,....

(b) There exists a number M > 0 such that for each n =0 lal < M.

3. ASYMPTOTIC EQUIVALENCE PROPERTIES.
THEOREM 3. Let A be a nonnegative matrix. Suppose z y, and z,y P for some

8 > 0. Then lAz pay if and only if for each 0, 1, 2

lira a,/ a,, O.
*0

PROOF. If lirr..,oo a,.,/_,a,., 0, 0,1, 2,..., we want to prove that #Ax #Ay.

Since x y, there exists a null sequence , such that

then

(#Az), sups,>, (Az)
(#Ay), supk>,(Ay)k

sup/,>, i=o a/,iz,

sups,>,, =o aqy

where N is a positive integer.

Since ( is a null sequence, supj [’j[ < oo, and for any > 0 there i an N E N. such that if

>_ N, then I[ < e. Hence

g
S.__F_,:.-_i"/ + sups>g ,=N+(Ay),,(Az)" _< +suplf, iS"sup,>,,O.=oa,,y,=o--" supk>_n =o ak, Y,

N
< + sup i1,=o’

N
aki< + up I! u Z:

o<i<N i=o o

According to the hypothesis, there exists N1 E N, such that if k _> N, then ak,/ak, <

e/Nsupi sup y,. So ifn_>N, wehave
O<i<N
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(pAy).
< + e + e.

751

sup>n
This implies that lim_oo (uAv).(uA) _< 1. Silarly, we may prove lim_ ,=0 _< and the

sup akl
0

two inequMities yield lim (.Av)
Next, supposeA Ay for any p such that z, P fo soe > O. We take

z (1,1,...). Then Az A, i.e.,

lim
sups,>,, i__o a,i

I.
suPk>. i=0

Hence, there exists M > 0, such that {i=0 aki}’=o is bounded by M.
If lim,_ a,i/[]a,, # 0 for some i. Then there exists A > 0 and a sequence nl < n2 <

such that a,,/ya,,, _> A, u 1,2,3, Take > 0, and define z and y by

y, 1,n 0,1,2,...

and

f if

l+t if n=i

It is clear that x y and x, y E P1. Consider the following limit:

lim
sup,>o
sups>,. i=0 a.iYj

lim
sup>(’----oa"kJ +

suPk>. ’_-0 ankj

l+tA.

We can choose 1/A, which gives

lim
(IAz),,,. > 2.
(pAy),,.

This is a contradiction of tAx Ay.
THEOREM 4. Suppose A is a nonnegative matrix; then x py implies Ax #Ay for

any bounded sequences x, y E P, for some > 0, if and only if A satisfies the following three

conditions:

(i) (aki)=o is a bounded sequence dominated by some B;
3---0

(ii) For any j 0,1,2,...
lim supi>_ a .0;

suPk>. [i=0 aki

(iii) For any infinite sequence j < j < j3...
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lira
sups:>. [,oo__l a=,

1.

Before we prove this theorem, we shall give some exaznples of A which satisfy the above

conditions (i), (ii), and (iii).
Example 1. A I.

Example 2.

PROOF OF THEOREM 4. First, assume that for any bounded sequences z,y E P,, for

some 6 > 0, /x /y implies iAx #Ay; we wish to prove that A satisfies the conditions

(i), (ii) and (iii). Take x V (1,1 ); then z,y are bounded, z,y e Pa, and z y; so

IAx IAy. But (tAx),, sups>, .,"=oa,.. Hence, (=oa:.i)=o should be bounded. This

proves (i). To prove (ii) suppose there is a j such that

li-" sups,>,, a A

for some A > 0. As in the proof of Theorem 3, take > 0 and define y (1,1 and

f if

l+t if n=j.

Then x,y . Pa,z,y are bounded, and/x kY; so we have pAx pAy. But

8UPk>n i=0 akiYi

sup>(tai + Eio a)
supk.0

> li"- sups>, aki

nsuPk>n i=0 aki

tA-1.

-1

By choosing , we get

1-imsupk>n i=O akjx, > 3- 2.
SUPk>. i=0 akiXi

This is a contradiction uAz #Ay, so (ii) must hold.

Finally, we are going to prove (iii). For any given infinite sequence jl < j2 < we define

z and y by

and

for every n,

f 2, if n j, for u 1,2,...,

1, otherwise.
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It is easy to see that x, y are bounded, x,y E P and #z #y. This implies #Az #Ay.
Hence we have

tim
sups>,,

sups_>,, :0

where J {jl, j2, j3,...}

Hence

This implies

tim
supk>"(2 ie.r ak: + :j ai:)

2 sups>,, =o
2 sups_>. =o aj

tim
sups>, i: ai + sups>, io ak

2 sups>, ,:=o
SUpk>n .,:.j ak: -J- .

supk>. .e: ak: +< lim
sups>_. Eoa 2

lim sup>_, jeJ a: > 1.
SUPk_> =0 akj

On the other hand, it is clear that

Hm supea < 1.
supkz. =o akj

ComSining the lt two inequalities together, we get

whi proves (iii).
Conversely, assume A satiss the renditions (i), (ii) and (iii), d suppose z, V are bounded

by some M > O, z, V Ps for some 6 > O, and z gV. For any e > O, since z, are bounded,
there exists N q N such that if j N, then

yi < lim sup Yi + e

and also there exists an infinite sequence j: < j2 < such that

for 1,2, 3,.... Therefore

sup,>. E=olim
sups_>. =o aky:

zj, >_ li_rno. sup z e
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sups,>. ,=o> lim
sup}> [Y2o a}:yj + --N,+, a}iY3

> lira
sups>.o akj. (lim,_ sup.>, z. e)

M supk>_, Zo ak, + sup,>_. ,=a+1 ak,(lirnt..oo sup.>,, y, + e)

> lim
M sup,>,. EV-ao ai + e,up,_>. =o a,i + sup.>.(=N,+l a.j)lim,_, sup,>,, V,

> lim
(supt=>- ’--o aki,) lim,_ sup,>t zi

M sup,>. Eo aj + esupk>. ;=oakj "dr" (SUPk>n EiN,+I a*3)lim,-oo supi>t V3

> lim
(sup,>. ,_,=o ak,) limt-oo sup/>, zi

M sup,>.. E-oa,i + ,sup,>. =o a, + (sup,_>. E=N1+x ak3)limt_oosupi>_, Vj

(her,e, we used (iii) to deduce that

sups>. =o a,ii
lim

sup,_>. =N,+x a*i

where

> lim
e

(sup,>.. a,i) tl.i.m sup V,
j=N,+ i>_l

(sup,>.. [ak, tliIn sup xi
i=1

6 supk>n Zak
3-’0

(sups>.. "a,. tli.m sup z.
,=I ’""

For the fixed N, combining conditions (ii) and (iii), we can easily prove

Hence, for the given e > 0, there is N., 6 N, such that if n > N=, then

supk>. ZO ak,

sups>, l%a a,3,
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and

sup,>.

__
o a,j

These imply that if n >_ N2

sup,>. i=1
<l+e (by(iii)),

s_up.>. .,0a,i < + e (by (iii)).
sups>. E=I akj,

Hence

-> +(i+e)+i+e

lim
sups>.

sup,>_.
Since e is arbitrary, we have

lim
sup,>. .=0 a,jxj > 1.
sup,_>. =o a,jyj

Similarly, we can prove

lim
sup,>. a=o a,jx. < 1.
sup,>. .=o a*.cYa

Thus, we have finished the proof.
REMARK.
Let A be a nonnegative matrix, A (a,a). If A satisfies the following two conditions, then

A satisfies the conditions (i), (ii), (iii) of theorem 4:

a) There exists A > 0, such that

lima.. A

g) iI, 0

PROOF OF THE REMARK. If A satisfies the above conditions a and b, it is easy

to see that A satisfies (i) in theorem 4. To prove (iii), let jl,j2,.., be an infinity sequence:

jl < j < Then

lim
sup,>. .i=1 a,j, > lim

supa,> aa,=,

lim_oo supi,> aj,j, A
lim,_oo supk>,oakj + 0

This inequality gives that

lira
sup,>. -a%1 a,
sup,>,oa

Next, let’s prove (ii) of theorem 4. In fact, for any fixed j 0, 1,2,...

m sups>, aj

< tim
sup>i<ai

Iim_0 sup,>, < ab
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lim,,.-.oo supk>, :#k akj

0

Next, wegivesomeexamplestoshowthattheconditionsoftheorem4arenecessary.
Example3. LetAbednedllows:

ooooooo
12000000

2020000

120000

20200
A=

1200

202

0 12

2

It is easy to see that A satisfies the conditions (i) and (ii), not (iii).
Take

z (2,2,2,2,...)

y (2,1,1,1,2,1,1,1,1,2,1,1,1,1,2,...)

x,y are bounded sequences and z,y 6. P1. For m 1,2,3,... we have tt,(x) t,(Y) 2.

Hence tt,(x)
1. But

Ax (8,8, S,...)

Ay (6,3,...) y=(y,) y, <6 i= 1,2,...

This implies

Example 4.

Let

#,,,Ax 8 4
-=-#1 as

tt Ay 6 3

A

A satisfies (i) and (ii) not (iii).
Take

(2, 9., 2, .)

y (2,1,2,1,...).
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z and y are bounded and z, V E P1. We also have

rnX 1, m= 1,2,...

Ay (2,2,2,4,4,8,S,...).
Then, if m is odd,

if m is even

= (tAx),, has no limit as m c.
(,A)

(Ax)
(gAy)

(IAy)

-2

-1
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