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ABSTRACT: For a sequence-to-sequence transformation A, let RmAz = C,5m [(Az)a| and
BmAT = sup,5,, [(AT)a|. The purpose of this paper is to study the relationship between the
asymptotic equivalence of two sequences (lim, z,/y, = 1) and the variations of asymptotic
equivalence based on the ratios Ry Az/RmAy and pmAz/umAy.
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1. INTRODUCTION.

Let z = (2), and y = (y). be infinite sequences, and let A be a sequence-to-sequence
transformation. We write z ~ y if lim, z,/y. = 1. In order to compare rates of convergence
of sequences, in [2] Pobyvanets introduced the concept of asymptotically regular matrices,
which preserve the asymptotic equivalence of two nonnegative sequences, that is z ~ y implies
Az ~ Ay. Furthermore, in [1] Fridy introduced new ways to compare rates by using the ratios
Rnz/Rny, tmz/pmy when they tend to zero. In [2] Marouf studied the relationship of these
ratios when they have limit one. In the present study we investigate some further properties

involved with the ratios such pAz/pAy, RAz/RAy when they have limit one.

2. NOTATIONS AND BASIC THEOREMS.
For a summability transformation A, we use D4 to denote the domain of A:

Dy={z: Z anxzi converges for such n > 0}
k=0
and C4 to denote the summability field:
o0 00
Ca={z:2€ D4 Y. anzx converges.}

n=0 k=0

Also

Pi={z:2,26>0 forall n}

and
P = {z:2,>0 forall n.}

For a sequence z in £! or £%, we also define Rmz = Toym |Za| and pmz = SUPp>m [Za] for
m 2> 0.
We list the following results without proof.
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THEOREM 1. (Pobyvanets [2]). A nonnegative matrix A is asymptotically regular if and
only if for each fixed interger m,lim,_o @nm/ 520 @ni0.

THEOREM 2. A matrix A is a ¢g — ¢o matrix (i.e. A preserves zero limits) if and only if

(a) iMpeoo ank = 0 for £ =0,1,2,....

(b) There exists a number M > 0 such that for each n T2 |an] < M.

3. ASYMPTOTIC EQUIVALENCE PROPERTIES.
THEOREM 3. Let A be a nonnegative matrix. Suppose z ~ y, and z,y € Ps for some
6> 0. Then pAz ~ pAy if and only if for each : = 0,1,2,...

ti o/ S =0
1=0

(ol
PROOF. If limp oo a,,;/za,.j =0,:=0,1,2,..., we want to prove that pAz ~ uAy.
=0
Since z ~ y, there exists a null sequence ¢, such that

zn = ya(14¢) n=0,1,2,..;

then

(/“AI)A - supk)n(Az)k
(1AY)a SuPk>n(Ay)k

{e <]
00
SUPk>n 2oino Bki¥i

SUPk>n Lizo @ki(¥i + ¥ili)
SUDg> TZcany:

SUP>p, Limo aki¥il(il
SUP4>n Limo Gki¥i

IA

1+

SUPL>p Trvo Gki¥ilGil | SUPk>n TN 41 kiG]
SUPk>n 20 akivs SUPk>n Lormo TkiYs

IN

1+

where NV is a positive integer.
Since ¢ is a null sequence, sup, [{,| < co, and for any € > 0 there i¢ an N € N. such that if

i > N, then |(;] < e. Hence

su Y €su 2 N+1 Gk
(pAz), <1+ sup Il E Pixn GkiYi | €SUPk>N z =N +1
(#Ay)n =0 supkzn 2?-:0 QkiYi supkzn 2.:0 Ak Y

IA

i SU Ak
L suplG| 3 g Pendt

o
i=0 Sukan 2:':0 Qi

+e

IN

1+su su su
up |Gl sup y,§ P Z.-o -

(=<
According to the hypothesis, there exists N; € N, such that if ¥ > Ny, then aj, /Eak. <
1=0

¢/Nsup(; sup y,. Soif n > N, we have
) T 0<igN
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(pAz)n
(I‘Ay)n

<l+e+te

o
SUPk>n zakx

This implies that lim,_., {“L’h < 1. Similarly, we may prove lim,_ o ——2— < 1 and the

nAY)n
SUPk>n Zakl

1=0
two inequalities yield limp—.oo -8::—:}2 =1.
Next, suppose uAz ~ pAy for any z ~ y such that z,y € Ps for some § > 0. We take

z=y=(1,1,...). Then pAz ~ pAy, ie.,

. su 0 Oki

lim Pi2nLizo 0k _
R SUDky , 20520 ki

Hence, there exists M > 0, such that {$82, ak}52, is bounded by M.

el
If limp—oo a,..'/Za,., # 0 for some i. Then there exists A > 0 and a sequence n, < n; < ...,
1=0

such that a,,/) @y, > A\, u=1,2,3,.... Take t > 0, and define z and y by

3=0

m=1n=0,1,2,...

and

. = 1 if ns#a
" 1+t if n=1

It is clear that z ~ y and z,y € P,. Consider the following limit:

00
. SUDg>y Ei=0 Gnyy T,
lim Zrk2u £oi=0 Pnas Ty
u=o SUDL>y Limo GnyiYj

supk>u(2::0 An,; + tankz)
US® SUPsy 2oing Onyj

> lLm supg> (oo an,j +tA E;o an,:)
—  u=—soc0 sukau mo Gn,j

= 14t

We can choose t = 1/A, which gives

This is a contradiction of uAz ~ pAy.

THEOREM 4. Suppose A is a nonnegative matrix; then uz ~ py implies pAz ~ pAy for
any bounded sequences z,y € P;, for some § > 0, if and only if A satisfies the following three
conditio&s:

(i) (O_ak;)320 is a bounded sequence dominated by some B;

=0

(ii) For any j =0,1,2,...
SUPi>a ki _ .
- k)

N0 SUPLy, Lino Gki

(iii) For any infinite sequence j; < j; < j3...
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0O
SUDPk>n 2;:1 Gk;,

= 1.
— 00 .
"0 SUDLy, Yo Gk

Before we prove this theorem, we shall give some examples of A which satisfy the above
conditions (i), (ii), and (iii).

Example 1. A = 1.

Example 2.
1
& 1
* ¥ 1 0
A= 3 1 i
42 42 42
1 1 e 1 1
(n+1)?  (n41)? (n+1)?

PROOF OF THEOREM 4. First, assume that for any bounded sequences z,y € P;, for
some § > 0, pz ~ py implies pAz ~ pAy; we wish to prove that A satisfies the conditions
(i), (ii) and (iii). Take z = y = (1,1,...); then z,y are bounded, z,y € P, and uz ~ puy; so
pAz ~ pAy. But (pAz)n = supyy, Lj2oak;. Hence, (72 ak;)fzo should be bounded. This
proves (i). To prove (ii) suppose there is a j such that

q SUPg>n Gkj

"ll‘n; SUPk>n 220 ke =

for some A > 0. As in the proof of Theorem 3, take t > 0 and define y = (1,1....) and

1 if n#j,
z, = ]
1+t if n=3j.

Then z,y € Py, z,y are bounded, and uz ~ uy; so we have pAz ~ pAy. But

OO0
——SUPj>n Lino Gk Ti
h OO
R0 U, D20 kil

T SUPx>n(takj + Tino ak;)
m
n=e SUPk>n 20 Gki

1SUDL>p Ok

2 lim -1
n~%®SUP}>, 220 Gki
= tA-1.
By choosing t = 2, we get
o .
Tm SUPk>n Limo Gkj L1 >3-1=2
= SUPk>n 20 GkiTi
This is a contradiction pAz ~ pAy, so (ii) must hold.
Finally, we are going to prove (iii). For any given infinite sequence j; < j» < ..., we define
z and y by
yn = 2 for every n,
and

_J 2 ifn=j, for u=12,...,
" 1, otherwise.
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It is easy to see that z,y are bounded, z,y € P, and pz ~ py. This implies pAz ~ pAy.
Hence we have

1 lim S9Pk2n 208k,
— OO
n—ee SUPg>p 2]:0 ak;Y,

lim SUPk>n 1,eJ OkyT; + 2,47 Ok, T;)
nmee 25up>n Zyzo Gk

where J = {j1, 72,73, ...}

n SUPk>n(2 Xjes aky + X,¢7 0k;)
m
n—oo 2 SUPi>n E;-o_-o Qkj

I (SuPk>n(Xjes ki + Tiyoo oky)
= lim =

n—oo 2 s“kan 2j=0 (7]

o0
< fim S9Pk2n Yjes 0kj + SUPk>, Yino 0k
T onme 2supy>n 520 aky

. SUPk>n E;e.l k) 1
= lim = + =
N 2SUPkyn 020Gk, 2

Hence
s 1

1. su s @
1< - lim Pk>n2°°ze J%k 2
2n=®supy, 220k 2
This implies
SUDPk>n ZjEJ ak; >1
B0 SUDL> . Soo Gk
On the other hand, it is clear that

m SUPi>n zle.l %k 1
R=00 SUDk>n YoTno Gkj

Combining the last two inequalities together, we get

SUDk>n EJEJ Qs =1
— 00 -
n—eo sukan EJ:O Ak,

which proves (iii).

Conversely, assume A satisfies the conditions (i), (ii) and (iii), and suppose z,y are bounded
by some M > 0, z,y € P for some § > 0, and uz ~ py. For any € > 0, since z,y are bounded,
there exists V; € N such that if j > N, then

. < | .
vis g sgpuite
and also there exists an infinite sequence j; < j2 < ..., such that

z; > lim supz; —¢
7-—,'_‘°0j>1: i

for7=1,2,3,.... Therefore

{o o}
SUPk>n L gm0 k) T;

puy =
N SUDgs . Xoge0 4Ky Ys
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00 .
SUPg>n 2::0 ki, Tj,
p—y N . oo )
T SUpky, 2,‘=o ag,y; + Z,=M+1 ak;Y,

SUPg>n 220 Qkj, (liml-ooo SUP,>, Ty — 6)

> lim v -

=% M SUPkyn 120 Gk; + SUPkyn Ly, +1 Gk; (liMemco SUP,> ¢ ¥, + €)

M o0

> & (SUPk>n Limo @) iMoo SUP;>, Ti — €3UPk>, 327 Gkj,
2 lim = RYT

"= M SUPyyn Tito Gkj + €SUPkyn oo Gkj + SUPksa (TN, 41 @kj) iMoo SUP,5, U
> (supk>n E?:O akf:) hml—'oo Sup,>¢ Zi
> lim - - '

"= M SUDk>p Lyui0 Okj + €SUPk3n Lo Okj + (SUPk>n Li2N, 41 %) liMemsco SUP;>¢ )

00
im €SUPL>n Yo ki,
=% (SUPjyn LN, @k;) iMoo SUP;5, Yj
. (sUPk>n X520 8kj.) iMoo SUP;>, T

> lim

o0 . K K
»=% M supi>n Thoak; +e€ SUPj>n 2520 Gkj + (SUPk>n Lin, +1 Gky) liMeco SUPi>, ¥j

(here, we used (iii) to deduce that

- SUPk>n ) o) Gk
. SUPk>n Ez.-:o Gkji Lim k20 2=
lim = =

n—co P ar; ety WPisn D oy Ok
supkzn j=N1+1 Gkj . "
2n 2=t %K)

—
I
—
~

. £
A BB+ B

1 €
> lim - -2,
T n=00 Msupx>, ZN,IQ Gk €8UPx>n Z:o Gk SUPk>n Z =Ny +1 %K) )

EET0 DT vy ey o
6supk2n om1 Ok, + 6mp,2,‘ -1 Ok, SUPk>n ),y O3,

where

Ny 0
Msupis, Y ak, €SUPkyn D Gk
" 1=0 —- =0
Bl = )Bﬁ = )

o0 o0
(supizn 3 ax;) fim supz, (suPyzn 3k, Jim supz,

i=1 1=1

fed
(supezn 3 aij) lim supy,
j=N1+1 2
By il
(suPizn D _aks) lim supz;

i=1

For the fixed MV, combining conditions (ii) and (iii), we can easily prove

N
SUPy>, 3j=0 Qkj
SUDL>n 3521 Gkj,

Hence, for the given € > 0, there is N> € N, such that if n > N,, then

— 0 as n — oo.

Ny
SUPg>p 22=0 Ak,

P>y <
sukan Zl:l Qk;,
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SUPk>n Ljeo Gkj
—=tI = < 1+4¢  (by (i),
SUPk>n 2oin1 Gk, (by (i)

and

M
SUPen Xm0 %K _ 4o (by (iii)).

SUPk>n Z::l Qkj,
These imply that if n > N,

1 > 1
M supy>, EN__’O K, -

+ € SUPk>n Z:a:o“*l + SUPk>n 2°:N 1 8k) A:s& + %(1 + E) +14¢
§supxyn E =1 8k, §supiy, E :.‘ ak,, SUPk>n S =1 Ok,

Hence

SUDPk>n E?';o Ak T5 > 1
R SUPg>, Dm0 GkiVi Mepe(l4+e)+1+e

Since € is arbitrary, we have

_£
5

00
SUPsyn 020 0435
m = >1.
"= SUDLsp Ljoo Gk Y;
Similarly, we can prove
o0
m SUPk>n 2 =0 3k; T, <1
—=——<
n=% SUPk>n Lo GkiY)

Thus, we have finished the proof.

REMARK.

Let A be a nonnegative matrix, A = (a,,). If A satisfies the following two conditions, then
A satisfies the conditions (i), (ii), (iii) of theorem 4:

a) There exists A > 0, such that

J1g, G = 2
b) Jim, ar, = 0
j#n

PROOF OF THE REMARK. If A satisfies the above conditions a and b, it is easy
to see that A satisfies (i) in theorem 4. To prove (iii), let j;,J,,... be an infinity sequence:
j1<j2<.... Then

OO
m SUPk>n Ei:l Gkj, > lim supz. >n 43,5,
N0 SUDLy, XiZ0Gkj MU SUDkya iZp Okj
__limpecosup; 5, 854, _ L .
limp o0 SUPk>n Lo Okj A+0

This inequality gives that
SUPj>n Loz Gki,
N SUDL>, Ljzo Gkj
Next, let’s prove (ii) of theorem 4. In fact, for any fixed j = 0,1,2,...
SUPk>n Gkj
N SUDLy s 520 Gkj

=1

. su ; 7%}
lim Pi>n Ljck Okj

n—+00

IN

ann

im0 SUPgk>n EJ <k Qk;)
lim, 0 @an
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hmﬂ-’OO SUPk>n E}#k Gk,
A

<
limn—oo Elf" An,
A
=0

Next, we give some examples to show that the conditions of theorem 4 are necessary.
Example 3. Let A be defined as follows:

202000000
12000000
2020000
120000
20200

A=
1200
20 2
0 1 2
2

It is easy to see that A satisfies the conditions (i) and (ii), not (iii).
Take

z = (2,2,2,2,..))
vy = (2,1,1,1,2,1,1,1,1,2,1,1,1,1,2,...)

z,y are bounded sequences and z,y € P;. For m = 1,2,3,... we have un,(z) = un(y) = 2.
Bm(T) _
Hence ———= = 1. But

Hm(y)
Az = (8,8,8,...)
Ay = (6,3,...) y=(w) un<6i=12,...
This implies
Um Az . 8 4 £1 o
- == —
phm Ay 6 3 e
Example 4.
Let
1
1 0
1
_ 4
A= 1
8
0
A satisfies (i) and (ii) not (iii).
Take
z = (2,2,2,...)

v = (2,1,2,1,...).
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z and y are bounded and z,y € P;. We also have

BmT

— =1, m=1,2,...
EmyY
111
Az = -z
z (2’1,2’4,8, )
111111
Ay = (2,=,2,5,-,=,=
y (12,2)4’478’8?' )
Then, if m is odd,
(I‘Az)mz
(hAY)m
if m is even
(pA:c)m=
(BAY)m
(FAz)m N
= ——= has no limit as m — oco.
(£AY)m
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