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ABSTRACT The purpose of this paper is to establish the existence of analytic Wiener and
Feynman integrals for a class of certain cylinder functions which is of the form

F(x) f((h,,x)’,... (h,,,x)’), x . B,

on the abstract Wiener space, and to establish the relationship between the Wiener integral and
the analytic Feynman integral for such cylinder functions on the abstract Wiener space. We
then establish a change of scale formula for Wiener integrals of such cylinder functions on the
abstract Wiener space.
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1. INTRODUCTION
In [4], Cameron and Storvick expressed the analytic Wiener and Feynman integrals as the

limits of Wiener integrals for certain Banach algebra ,S(L’[a,b]) of functionals. Using these

results, they found a rather nice change of scale formula for Wiener integrals on a classical

Wiener space [5]. In [13;14], Yoo, Yoon and Skoug extended these results to an Yeh-Wiener

space and to an abstract Wiener space.

In [13], Skoug and Yoo expressed the analytic Wiener and Feynman integrals as the limits of

Wiener integrals, and then they established a change of scale formula for Wiener integrals on

the Fresnel class of the abstract Wiener space.

In this paper,we will show that the analytic Wiener and Feynman integrals of certain cylinder

functions on the abstract Wiener space exist, and we will establish the relationship between the

Wiener integral and the analytic Feynman integral for such cylinder functions on the abstract

Wiener space. Using these results, we will establish a change of scale formula for Wiener integrals
of such cylinder functions on the abstract Wiener space.

Note that the Fresnel class on the abstract Wiener space consists of bounded functions but

not all cylinder functions are bounded in general.

2. DEFINITIONS AND PHRASES
Let H be a real separable infinite dimensional Hilbert space with inner product (., .> and norm

I" (V/’,"> Let I1" [10 be a measurable norm on H with respect to the Gauss measure #. Let B
denote the completion of H with respect to I1" II0. Let denote the natural injection from H into
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B. The adjoint operator i" of is one-to-one and maps B" continuously onto a dense subset of
H’, where H" and B" are topological duals of H and B, respectively. By identifying H with H"
and B" with i’B’, we have a triplet (B’,H,B) such that B" C H" H C B and (h,z) (h,x)
for all h in B" and z in H, where (-,-) denotes the natural dual pairing between B" and B. By
a well known result of Gross [8;12], #.

-1 has a unique countably additive extension v to the

Borel a-algebra B(B) on B. The triplet (B,H,v) is called an abstract Wiener space and v is

called a Wiener measure. We denote the Wiener integral of a functional F by fs F(z)v(dx).
For more details see [8;12].

Let {e}= denote a complete orthonormal system in H such that e’s are in B’. For each
h H and z B, we define a stochastic inner product (-,-)~ between H and B as follows:

(h,z) ,hrn,, _.(h,%)(e,z), if the limit exists,
(2.1)

0, otherwise.

It is well known [11] that for every h H, (h,x) exists for v-a.e, x in B and it has a

Gaussian distribution with mean zero and variance Ihl -. Furthermore, it is easy to show that

(h,x) (h,x) for v-a.e, x in B if h E B, (h,x) is essentially independent of the complete
orthonormal set used in its definition, and finally that if {h,... h} is an orthonormal set of

elements in H, then (h,x)~, (h,x) are independent Gaussian functionals with mean zero

and variance one. Note that if both h and x are in H, then (h,x) (h,x).
Throughout this paper, let R denote the n-dimensional Euclidean space and let C, C+, and

C denote the complex numbers, the complex numbers with positive real part, and the non-zero

complex numbers with nonnegative real part, respectively.
DEFINITION 2.1 Let (B, H,v) be an abstract Wiener space. A function F is called a

cylinder function on B if there exists a finite subset {g,-.. g} of H such that

F(x) ((g,x)~, (g,x)~), x B, (2.2)

where is a complex-valued Borel measurable function on Rk. It is easy to show that there

exists a linearly independent set {hi,-.. h} of H such that every cylinder function F of the

form (2.2) is expressed as

F(x) f((h,x)~, (h,,x)~), x B, (2.3)

where f is a complex-valued Borel measurable function on R". Thus we lose no generality in

assuming that every cylinder function on B is of the form (2.3).

DEFINITION 2.2 Let F be a complex-valued measurable function on B such that the

integral

J(F; A) ./ F(A-1/2x)v(dx) (2.4)

exists for all real A > 0. If there exists a function J*(F; z) analytic on C+ such that J(F; A)
J(F; A) for all real A > 0, then we define J*(F; z) to be the analytic Wiener integral of F over

B with parameter z, and for each z C+, we write

I"(F; z) J(F; z). (2.5)

Let q be a non-zero real number and let F be a function on B whose analytic Wiener integral

exists for each z in C+. If the following limit exists, then we call it the analytic Feynman integral

of F over B with parameter q, and we write

I1(F;q)= lim I(F;z), (2.6)
z-----sq
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where z approaches -iq through C+ and -1.

DEFINITION 2.3 Let (B, H, v) be an abstract Wiener space. Let n be a positive integer,
and let {h,-.. h} be an orthonormal set of elements in H. For 1 < p < x, let ’(n; p) denote
the class of cylinder functions F with the form as follows:

F() f((h,)~,..., (h,)~), e ,
where f ]R C is in Lp(]R), the space of functions whose p-th powers are Lebesgue integrable
on llano

Let ’(n; o) denote the class of cylinder functions F with the form as follows:

F(x) f((hl,X)~, (h,.,,x)"), x B, (2.8)

where jr R C is in C0(R"), the space of continuous functions on R" that vanish at infinity.
We will close this section by mentioning the following useful theorem which is called the

Wiener Integration Formula.

THEOREM 2.4 Let (B,H,v) be an abstract Wiener space and let {h,---,h} be an

orthonormal set of elements in H. Let F B C be a function defined by the formula

F() ((h,,)~, (h,)~), ,
where f :JR C is a Lebesgue measurable function. Then

/zF(x)’(dx)=/Bf((h,x)","", (h, x)~) v(dx)

(-) f()-exp{-[l}d, (2.9)

where (u,,.--, u) R", [[2 E3=I ’/"t32, and d du.., du,.,.

In the next section, we will use several times the following well-known integration formula:

exp{-u + i} du exp{- yg }, (2.10)

where is a complex number with Re > O, b is a real number, and -1.

3. THE MAIN RESULTS
We will begin this section by showing that the analytic Wiener integral of F exists for every

F _<p<_’(n; p) and that the analytic Feynman integral of F exists for every F Y(n: 1).
THEOREM 3.1 Let (B,H,v) be an abstract Wiener space and let F ’(n;p) be given

y (.) o: (.s), wh < < . The.:

(i) the analytic Wiener integrals of F exist, and for every z C+,

z .) /()exp{_ZI""(F; z) (-) 5[[2} d, (3.1)

(ii) for every non-zero real number q, and for F ’(n; 1),the analytic Feynman integral of F
exists and is given by

iq iq i-l: } d- (3.2)I’I(F; q) (-r) /()exp{-

and d- du du,.,.h (,,...,) e n, I1 := ,,
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PROOF. By Theorem 2.4, we have that for all real A > 0

J(F; A) =/, F(A-1/2x)v(dx)

(-)- J’()exp{-l’l2}

Let ’(F;) ()f l()exp{-ll}d, z e C+. Then J’(F;A) J(F;A) for all reel

A>O.
e il u orer’s Theorem to sbo tt J’(F; z) n anc [uncton o[ z n +. Fkst

o[ I, by the Dominated Convergence Theorem, e cn so tbt J’(; z) s continuous on C+;
an pproprte dominating function s obtained almost exactly n the fo1og gument.
No et be any rectabe smpe cod curve yng n +. e nd only sbo that

J’(F; z) d 0.

But this will clearly follow from the Cauchy Iteal Theorem if we can justify movg the
line teal along r inside the other inteals defining J’(F;). Let sup{li
and inf{Rez e ft. If F belongs to (n; 1), then the funetio ()lI()l dominates

()II()lexp{-ll} ad iteable on N. If F belongs to (;p) (1 < p < ), the

the function ()lI()lexp{-l} dominates ()lI()lexp{-11 } d is iteeble
on N by H61der’s Inequality. If F belongs to (n; ), then the fuctio () Mp{-}
aomiates () II()l exp{-}ad is inferable on N, where M a bound with

M for all N.
Hence we can apply ubini’s Theorem to the teel fr J’(F; ) d and then we have fr J’(F;

d 0, becau the functio () exp{-} analytic on C+. Then we have established

(a.1). Finally the proof of (a.2) immediate.

In order to obtain our main results, we nd the following lemma:

LNMMMN g. t (B, H,u) be abstract Wiener space and let {h,,..., h} be

Definition 2.a. Let F e (n;p) be given by (2.7) or (2.8), where 1 p . Then for every

+, the functional

2

is Wiener inteable on B.
PNOO. By Theorem 2.4, we have that for every C+,

( ) [(h,, )1,}. F()()"1 zl}d=()= .Y()"e{-
dd du...du.

We can show that the lt teal h: a finite value by using the same argument in the

proof of Theorem 3.1. Thus the proof of this lemma complete.

THEOREM 3.8 Let (B,H,) be an abract Wiener space and let {h,,..-,h} be

Definition 2.3. t F e Y(n;p) be given by (2.7) or (2.8), where 1 < p < . Then for every

z e E+, the analytic Wiener tel I:(F; z) of F is expreed follows:

z:(F; z) z xp{ ( z) [(a,, )]}. ()(). (.)
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PROOF. By Lemma 3.2, the right hand side of (3.3) has a finite value. Using Theorem 2.4,
we obtain that

exp{ (1 z) -[(h, x)~]} F(x)u(dx)2

exp{ (1-z) ][(h,,l l.I((,,) (h )(

I()’exp{-ll}

and d du...du. Therefore, we havewhere u (u,,.-. ,u,) 6 R", Il E,=u,,
establhed the equality (3.3) by (3.1)in Theorem 3.1

Now we shall express the analytic Feynman inteal I"t(F; q) of F (n; 1) the lit of
a quence of Wiener inteals on the atract Wiener space.
THEOREM 3.4 Let (B,H,v) be an abstract Wiener space and let {h,... ,h,} be in

Definition 2.3. t F 6 (n; 1) be given by (2.7). If {z}= is a quence of complex numbers
from C+ such that z approhes -iq through C+, where q is a non-zero real number and

-1, then the analic Feynman inteal I"(F; q) of F is expressed follows:

i,(F;q) 2(z)9 exp{ (1 z) [(h, x)]’} F(x)u(dx) (3.4)

PROOF. By Theorem 2.4, we can show that

(z) exp{ [(h,, x)]’} F(x) U()

=1

Zk Zk() f().exp{-Tll}d,

and d du...du. Using the argumentwhere u (u,,.-. ,u,) 6 R", 1[= =,u,
similar to that the proof of Theorem 3.1, we conclude that

lim <z)/ exp{ 1- z)[(h,, z).]} F(z)()
2=1

2i()e I().exp{-ll}d
-iq iq

where the last equality follows from (3.2) in Theorem 3.1 Thus the proof of this theorem is

complete.

Now we can obtain a change of scale formula for Wiener integrals on (n; p) which follows

from Theorem 3.3 and Definition 2.2.

THEOREM 3.5 Let (B, H,) be an abstract Wiener space. Let p > 0 be given and let

{hi,--., h,,} be as in Definition 2.3. Then for every F 6 ’(n;p),

/s F(px) u(dx) p-" fe exp{
(p l)
2p [(h,,x)"12} F(x) ,(dx), (3.5)



78 Y.S. KIM

where 1

PROOF. First, we can show that for all real z > 0,

I(F;z) =/B F(z-1/2x)v(dx)

by Definition 2.2. Using Theorem 3.3 and taking z p-2 in the above equality, we have the

desired result.

EXAMPLE Let (B,H,v) be an abstract Wiener Space and n be a positive integer and let

{hi,... ,h} be an orthonormal set of elements of H. Define F B C by

F() f((h,,)~,..., (h., )~)

exp[--a ((h,, x)~)21
3-’1

(3.6)

where a is a complex number with Re(a) > 0.

It is easy to see that F E f31<<o’(n p) since Re(a) > 0, and so F satisfies the hypothesis

of all the theorems in this paper. But because of the special form of F(see(3.6)) we can easily

evaluate the integrals on the right-hand side of equations (3.1) and (3.2). Thus, for non-zero

real q and z E C+, it follows that

I(F" z) (--g) " and that Il(F q) lim qI(F z) (__=z) r
2--q
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