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ABSTRACT. We use selected semi-groups of self maps of a semi-metric space to obtain fixed point
theorems for single maps and for families of maps- theorems which generalize results by Browder,
Jachymski, Rhoades and Waiters, and others. A basic tool in our approach is the concept of commuting
maps.
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1. INTRODUCTION. By a semi-group of maps we shall mean a family H of self maps of a set X
which is closed with respect to composition of maps. Thus, if f,g E H, then fo g /H. Since
composition of maps is associative, H is indeed a semi-group with respect to composition. We shall write
fg for f o g and fx for f(x) when convenient and confusion is not likely.

We shall utilize the following semi-groups ofmaps in subsequent sections.
1.1. Let g X X, and H 0s gn: n 6 N U {0} }, where N is the set of positive

integers, gO i the identity map, gi g and gn+! g o gn.
1.2. Let g:X X, and H Cs f:X X fg gf }. Cs is a semi-group. For if

f,h Cs, then (fh)g f(hg) f(gh) (fg)h (g0h g(fh), and thus, fh Cg.
1.3. H={i}, and
1.4 If f,g: X X and fg gf, we can let H= f,gm: n,m E NU {0 }.

IfH is a semi-group ofselfmaps of a set X and a 6 X, then H(a) {h(a): h 6 H}.
Consequently, ifg:X X and H O, Os(a) {g"(a) n 6 N U {0} }, and is called the orbit ofg at a.

Just as we use semi-groups of maps to generalize the concept of orbits, we shall use semi-metric
spaces to generalize rsults pertaining to metric spaces. We need the following definitions.

DEFINITION 1.1 A symmetric on a set X is a function d: XxX [0, oo) such that d(x, y)
0 iffx y and d(x, y) d(y, x) for all x,y 6 X.

Given a symmetric d on a set X, we generate an induced topology t(d) for X as follows. For
x 6 X and >0, we let S(x) y 6 X: d(x, y)< } Then t(d) consists of all subsets U ofX such that
for each p 6 U, S(p) _C U for some >0. Just as in the case of a metric, t(d) is a topology on X.
However, if d is a symmetric, the sets S,(x) nee.,d not be neighborhoods of x. A semi-metric is a

symmetric d such that all sets S(x) are neighborhoods of x; i.e., 3 U 6 t(d) such that x 6 U C_ S(x). It
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is easy to verify that if d is a semi-metric, then a sequence Xn in X converges to x X in the topology

t(d) iff d(xn, x) 0. This is the property we desire. Hence, the following terminology.

DEFINITION 1.2 A semi-metric space is a topological space, denoted by (X; d), with topology

t(d) induced on the set X by a semi-metric d.

For further discussion of symmetrics and semi-metrics refer to [1 or [2]. In this context, we note

that a semi-metric need not be Hausdorff (or T2) Example 2.2 in [2] gives an instance of such a semi-

metric. Since we desire uniqueness of limits, we shall in most instances require that a semi-metric space

(X; d) be Hausdorff. Note also that- as in metric spaces- we shall say a semi-metric space (X; d) is

complete iff every Cauchy sequence in X converges to a point in X. If g:X --. X, then (X; d) is g-

orbtall!l complete iff every Cauchy sequence in Og(x) converges to a point in X for all x e X. A

function F.X [0, oo) is lower semicontinuous iff F(x) _< lira infF(x.) when {x. is a sequence in X

converging to x.

To produce fixed points we use a contractive function P:[0, oo) --, [0, oo) which is

nondecreasing and which satisfies: li_rnoP.(t 0 for each 6 [0, oo). Throughout this paper, P will

denote such a map, and 7 will denote the family of all such maps P.

2. FIXED POINT THEOREMS. The major results in this paper evolve from the following lemma.

LEMMA 2.1. Let X be a set, g:X X, and let d:XxX [0, oo). Let H be a semi-group of

maps h X X such that H C Cg Suppose that for each pair x,y X there is a choice of r(x,y),

s=s(x,y) H and u,v {x,y} for which

(i) d(gx, gy)

_
P(d(ru, sv)).

Then, if n 6 N, for each pair x,y 6 X 3 r.,s. 6 H and u.,v. 6 {x, y} such that

(ii) d(gnx, g"y) _< P"(d(r.u., s.v.)).
PROOF. (ii) holds for n=l by (i), so suppose n N for which (ii) is true. Then, ifx,y 6 X,

d(g"+Ix, g"*ly) d(g(g"x), g(g"y))

_
P(d(ru, sv)), (2.1)

where r,s e H and u,v {g"x,gny}, by (i).

Specifically, u guo, where uo 6 {x, y} and v gnvo with vo 6 {x, y}. Thus

d(ru, sv) d(r(g"uo), s(g"vo)) where uo. Vo {x, y}. And since r,s H C C,
d(ru, sv) d(g"(ruo), g"(SVo))

_
P"(d(r.u., s.v.)), by (ii), (2.2)

where r., s H and u., v, {ruo, SVo}.
Then r.un {(r.r)uo, (r.s)vo}, where rr, rs H (a semi-group). So, r.u.-- r+u/, where r.+ H
(i.e., rn+ {rr, rs)) and u+ {uo, vo} C {x, y}. Similary, svn s+v.+, where sn+ H and

Vn+l {x, y}. Thus (2.2) implies

d(ru, sv) < pn(d(rn/Un+, sn/v.+)), with r.., s.+ H and Un+l,Vn/ {X, y}. (2.3)

But P is nondecreasing; therefore, (2.1) and (2.3) imply
d(gn+lx, gn+y) < p(pn(d(rn+lUn+l, Sn+l Vn+l)) Pn+(d(rn+lUn+l, Sn+l Vn+I),

with rn+,Sn+ H and Un+l, Vn+ {x, y}. Thus, (ii) is true for all n, by induction.

THEOREM 2.1 Let (X; d) be a T2 semi-metric space. Let g:X X and let (X; d) be g-
orbitally complete. Suppose H is a semi-group of self maps ofX such that H C Cs, and there is an a X
for which H(a) is bounded and g(H(a))C H(a). If for each x,y X a choice of r,s H and
u,v x,y such that

(*) d(gx, gy) _< P(d(ru, sv)),
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then g"(a) c for some c E X. If g is continuous at c, then g(c) c. If d is lower semicontinuous,
then is a fixed point for all h( E I-I) continuous at . Moreover, if g and each h E H are cominuous at

c, then c is the unique common fixed point ofg and the family H.
PROOF. We first prove that {g"(a)} is Cauchy. By Lemma 2.1., for each pair n.k N, there is

a choice of r.,s. q H and u.,v. q {a, gka} such that

d(g"(a), gn/k(a)) d(gn(a), g"(gk(a)) < P"(d(r.u., shy.)). (2.4)
Now r. E H implies r.a H(a) and r.g(a) gk(r.a) H(a), since g(H(a)) C_ H(a) implies that

gk(H(a)) C_ H(a). Thus r.u. H(a). Similarly, s.v. H(a). But H(a) is bounded, so 3 M _> 0 such
that d(x, y) < M for x,y E H(a). Thus, d(r.u., snv.) < M for n E N. Then (2.4) implies

d(gn(a), g"/k(a)) < P"(lVf), for n,k N (2.5)
since P is nondecreasing. But P"(M) 0 as n oo. So given >0, B no 6 N such that for any
m> n >_ no, (2,5) implies d(gn(a), gm(a)) <_ P(M) < e, with m=n+k. Consequently, {g(a)} is

Cauchy.
Since (X; d) is g-orbitally complete, g(a), g+l(a) c for some c X. If g is continuous,

g(gn(a)) gn+(a) g(c); thus, c g(c) since X is Hausdorff.
Now suppose that d is lower semicontinuous and that h( E H) is continuous at c. Then, since

H C_ Cs and g(a)-, c,

ga(h(a)) h(ga(a)) h(c). (2 6)

But (*) and Lemma 2.1 tell us that q r,s H and u,,v {a, h(a)} such that

d(ga(a), ga(h(a))) _< Pn(d(rnua, sva)). (2.7)
Then rnun ra H(a) or ru r,h(a) H(a) (rh H, since H is a semi-group.). Thus, in either

event, ru /H(a). In like manner, we conclude that sv H(a). Then, as above, d(ru, sva) _< M
for n e N, which implies by (2.7)

d(gn(a), g(h(a)))_< P0Vl) 0. (2.8)
But since g"(a) c, (2.6) implies that (g(a), g(h(a))) (c, h(c)) in XxX. Since d is lower

semicontinuous, d(c, h(c)) _< limood(g(a), g(h(a))) 0 by (2.8), so h(c) c.

To complete the proof we have yet to show that if c is a common fixed point for g and every
h H, then c is the only such point. So suppose that z X and that z g(z) h(z) for all h E H.
Then by (*) and Lemma 3.1, we can write:

d(c, z) d(g(c), g(z)) <_ P(d(ru, svn)) (2.9)
where rn,s e H and u,v e {c, z}. But then ru e {c, z}. Similarly, sv e {c, z}. Therefore,
d(rnua, savn) 0 or d(c, z). Thus (2.9) says that d(c, z) _< P(d(c, z)). Since P(d(c,z))
i.e., c is unique.

The following example shows that the family H in Theorem 2.1 can have fixed points other than
the unique common fixed point ofg and H.

EXAMPLE 2.1. Let X={0, }, g(x) 0 for x E X h(x) x for x X. Let d(x,y) Ix Yl
and H {h n ( N}. Since hn(x) x for n ( N, H {i }. Since d(gx, gy) 0 for all x,y ( X, it is

immediate that g and H satisfy the hypothesis of Theorem 3.1 with a 0, and is a fixed point ofH but
not ofg.

The first corollary provides conditions necessary and sufficient to ensure that a family H of

continuous self maps ofa semi-metric space has a fixed point.



28 G. JUNCK

COROLLARY 2.1. Let (X; d) be a complete Hausdorff semi-metric space with d lower

semicontinuous. A semi-group H of continuous self maps of X has a common fixed point iff H(a) is

bounded for some a 6 X, and B P 7) and a continuous self map g ofX which satisfies the following.

1. H C_ Cs and g(H(a)) C_ H(a)
2. For any x,y 6 X, q a choice oft, s 6 H and u, v {x, y} such that

d(gx, gy) _< P(d(ru, sv)).
PROOF. That the conditions are sufficient follows immediately from Theorem 2. I.. T.o prove

necessity, suppose a ( X and that h(a) a for h H. Then H(a) {a} and is thus bounded. Let g(x)
a for x X. It is immediate that gh hg for all h e H, so H C_ Cs. Moreover, g(h(a)) a for all

h H, so that g(H(a)) C_ H(a) and statement I. of the Corollary holds. Statement 2. follows upon

noting that d(gx, gy) d(a, a) 0 for all x, y X. (We can let P(t) t/2, e.g..)
NOTE 2.1. The next result and proof suggest that the function g of Theorem 2. may have an

infinitude or unbounded set of fixed points, although H may have just one. Example 3. in the next

section confirms this.

COROLLARY 2.2. Let (X; d) be a complete Hausdorff semi-metric space with d lower

sernicontinuous. A semi-group H of continuous self maps of X has a common fixed point provided
a X such that H(a) is bounded, and for any x,y ( X r, H and u,v {x, y} such that

d(x, y) _< P(d(ru, sv)).
PROOF. Let g id, the identity map.
COROLLARY 2.3. Let g be a self map of a metric space (X, d) which is g-orbitally complete.

If a X such that Og(a) is bounded and k N such that for each pair x,y e X there is a choice of

n=n(x, y), m---re(x, y) N and u,v ( {x, y}, for which

(.,) d(gkx, gky) <_ p( d(g"u, gmv))
then gn(a) c for some c E X. Moreover, if xo ( X and Oz(xo) is bounded, then g"(xo) c. If g is

continuous at c, c is the unique fixed point of g.
PROOF. Let H Os. Note that H C._ Cs g(H(a)) g(Os(a)) C_ Os(a), and that gk (a(a))

C_ H(a). Since d is a metric, d is actually uniformly continuous [3]. Thus, gk(a) C as n oo for

some c e X, by Theorem 2.1 applied to gk. If g is continuous at c, each g" H( Os) is continuous at

c. So, as an element ofH, g(c) c by Theorem 2.1..

We have yet to prove that g(a) c and that g(xo) c for xo with Os(xo bounded. To see

that gn(a) c, let > 0. Since (gk)’(a) c as m oo, m E N such that

d(gkm(a), c) < e/2, for m > m (2.10)
By Lemma 2.1 and (*’) ofthe hypothesis, ifm E N, for each pair x, y /X there exist rm, Sm /H

and urn, Vm / {x, y} such that

d((g)mfx), (g)m(y)) _< pm(d(rmUm, storm)). (2.1 I)

Since Os(a) is bounded, B M _> 0 such that

d(rmUm, SmVm) _< M if rmUm and SmVm are in Os(a). (2.12)

Now pm(M’) 0 as m oo, so we can choose mo 6 N such that

mo> m and PIn’(M) < /2. (2.13)

Let n > kmo. Then n krno + t, for some t, 6 N, and (2. I) implies

d(ga(a), gkm(a))= d(gkm’(gt"(a)), gkm’(a)) _< Pm(d(rm.Um., smVm.)) (2.14)
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where rm, H Og, urn. {a, 8t(a)}, so that rm,Um, Og(a). Similarly, Sm,Vm. Os(a).

Therefore, (2.12) implies that

d(rm.um., Sm.Vm,) < M, and since P is nondecreasing, we have

pro,( d(rm,Um., Sm.Vm.)) < Pm*(M) < /2, by (2.13). Thus (2.14) implies
d(g"(a), g*(a)) < /2.

But then (2.10) with m rno and the triangle inequality imply that d(gn(a), c) < e, since mo> ml. We

therefore conclude that g(a) c

If Xo X such that Og(x,) is bounded, the above argument shows us that 3 p X such that

g"(x,,) p. To see that p c, first observe that S Os(xo)t.J Og(a) is also bounded since d is a

metric; i.e., 3 M, > 0 such that d(x, y) < M, if x, y S. We can therefore apply (*’) and Lemma
2.1 as before to conclude that

d(c, p) =m.._,oolim d(gk(a)’ gk(x")) <-- m--,oolim pm(Mo) 0.

The following example shows that the hypothesis in Corollary 2.3 that the orbit Os(a be bounded

for at least one a 5 X is indeed necessary.
EXAMPLE 2.2. Let X [1, oo), P(t) t/2 for E [0, co), d(x, y) x y and g(x) 3x

forx,y X. Then P"(t) t/2" 0 asn--,, 8:X---,X and d(gx, gy)= Igx-gyl=31x-yl
< 9/21 x y 1/2 19x- 9yl 1/2 182x- 82yl P(d(g2x, g2y )). But since g"(x) 3"x oo for

each x X, Os(x) is bounded for no x E X and 8 has no fixed point.

In [4] Rhoades and Watson introduced the concept ofa "generalized contraction".

DEFINITION 2.1 Let (X, d) be a metric space. A function f:X--, X is a generalized
contraction (with respect to Q) if p,q 6 N such that for all x,y 6 X

(i) d(fPx, fqy) < Q(M(x, y)),
where

M(x, y) max{d(fx, fJy), d(fx, fex), d(fJy, fJ’y) 0

_
i,

_
p, 0

_
j, j

_
q).

(Q is a nondecreasin8 function Q: [0, co) [0, c) such that Q(s) < s for s > 0.)
NOTE .. Jachymski [5] studied the relation (i) and observed that it satisfies

(ii) d(Px, Py) (_ Q(max{ d(fu,Pv) 0 _( i, _( and u,v {x, y))
where r max{p, q), since Q is nondecreasins. Bm (ii), and hence (i), satisfy the relation (*) in

Corollary 2.3. In fact, the followin8 theorem by Jachymski- except the lst sentence therein- is a

consequence of Corollary :2.3. This last sentence refers to (9) which is essentially (i) above with the

restriction that either i, {0, p) or j, j E {0, q).
THEOREM 4. ([5]) Let fbe a 8eneralized contraction and let (X, d) be f-orbitally complete. If

lira cQ (s) 0 for [0, oo) and there exists a point xo X with a bounded orbit, then the sequence

{ix) conver8es to some z X. Moreover, for any x X with a bounded orbit, fx z.

Furthermore, if f satisfies (9) z is the unique fixed point of f.
The followin8 example shows that if we use the more 8eneral contractive property (*) of" Corollary

2.3, continuity at c or restrictions of the ilk found in (9) ofTheorem 4 are needed to ensure that the point

c (or z) is a fixed point.

EXAMPLE 2.3. Let X [0, 1] and let d(x, y) Ix- Yl. Define g: X --, X by g(x) 1/2(x+l)
for x E [0, 1) and g(l) . Then it is easy to see that gn(x) (x- 1)2"n+l (x - 1), and gn(1)

2 for n N. Thus, 8"(a) for any a X. Since X is bounded, Os(a) is bounded for each

a X. Thus, to see that the hypothesis of Corollary 2.3 is satisfied, we need only to verify that (*’)
holds. A check shows that
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d(g2x, g2y) 1/2 d(gx, gy) for all x,y E X. (2.15)

Thus, (*’) holds trivially with k=2, n m l, and u x, v= y for all x,y in [0, ]. However, gU(a)

for any a, but g is not continuous at and is not a fixed point of g. Note that property (9) of

Jachymski’s Theorem 4. does not hold since in this instance p q 2, and g, go do not appear in the

right member of (2. 1:5).

3. THE BOUNDED CASE. The following is an example of a function g and a family H which

satisfy the hypothesis of Theorem 2.1 and for which the set F -the set of fixed points of g- is not

bounded We then consider the significance ofthis phenomenon.
EXAMPLE 3.1. Let X [0, co) and d(x, y) x y for x,y E X. Let g(x) x for x X;

i.e., g is the identity map. So Fs [0, co), and is unbounded. Let P(t) t/2 for [0, co) and define

hn(x) nx for x X and n N. If H {hn" n E N}, and hu,hm ( H, then hnhm(x) hn(hm(x))
ha(rex) (nm)x ham(X). Thus hnhm hum ( H, so that H is indeed a semi-group. Since g is the

identity, the conditions H C_ Cg and g(I-I(a)) C_ H(a) for any a X) are satisfied trivially. Moreover,
d(gx, gy) Ix- Y < Ix y 1/2 13x- 3yl P(d(h3x, h3y)), so that (*) and hence the hypothesis

of Theorem 2.1 is satisfied, a=0 is the unique fixed point for g and H, but g has an infinitude of other

fixed points.
In the remainder of the paper, if (X; d) is a T2 semi-metric space and g:X X, we shall say that

g hasproperty P relative to a semi-group H ofselfmaps ofX iff for each pair x, y X 3 r, s E H and

u, v E {x, y} such that

(*) d( gx, gy) < P(d(ru, sv)).
NOTE 3.1. If a function g:X X has property P relative to a semi-group H of self maps ofX

for which H C_ Cg, Lemma 2. implies that if n E N, for any pair x,y X there exist ru, Su E H and Uu,

Vn {x, y} such that

(**) d(g"x, g"y) < P"(d(r.u,, S,Vu))
PROPOSITION 3.1. Let (X; d) be a T2 semi-metric space and let g:X X. Suppose H is a

semigroup of self maps ofX such that H C_ Cz. If g has property P relative to H and Fs is nonempty and

bounded, then

(i) Fs is a singleton {c}, and (ii) c g(c) h(c) for all h H.
PROOF. To prove (i), we first note that h(Fg) C_ Fs for all h H. For if h E H and a g(a),

then g(h(a)) h(g(a)) h(a), so that h(a) E Fg. Moreover, since Fg is bounded, 3 M > 0 such that

d(a, c) < M for a,c Fz.
Now by hypothesis, 3 c Fg. We assert that c is unique. For suppose a Fg. Then Note 3.1

says that we can choose UuVn {a, c} and rn,sn E H such that

d(a, e) d(gn(a), gn(e)) < Pn(d(r,u,, SVu)). (3.1)

But since hfFs) C_ Fs for h H, and since a, c E Fs, ruUu, SVu Fs. So by the above,

d(rnuu, SnVu) < M.

Therefore, since P and hence P" is nondecreasing, (3.1) yields:

d(a, c) < Pn(M) for n e N. (3.2)

Since Pn(M) 0 as n oo, (3.2) implies that a c.

(ii) is an immediate consequence of (i), since h e H) =, h(Fs) C_ Fs. Therefore, if h H,

h(c) {c}" i.e, h(e)= c. IZ!
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COROLLARY 3.1. Let (X; d) be a bounded and complete T2 semi-metric space. Let g:

XX and let H be a semi-group of self maps of X such that H C Cg and g(H(a)) C H(a) for a E X

If g has property P relative to H, then for each x E X 3 a point Cx X such that ga(x) Cx. If g is

continuous at one such cx, then Fg is a singleton, {c}, and Cx c for all x. Moreover, c h(c) for all

hH.

PROOF. Since X is bounded, H(x) is bounded for each x E X. Therefore, Theorem 2.1 implies

that gn(x) cx for some cx X. If g is continuous at one such cx, then g(cx) c.,x. But then F is

bounded and nonempty, so that Proposition 3.1 implies that F {c}, a singleton, and that c h(c) for

allh H. E!
Corollary 3.1 has Theorem 1.[6] by Browder and a result by Zitarosa [7] on contractive self maps

of a bounded complete metric space as special cases with H {i }.
The proof of our next theorem, as did the proof of Corollary 2.3, requires that the union of two

bounded sets be bounded. So we again need a metric. Also, observe that in Example 3.1 the set H(a)
ha n E N is unbounded for a -5/: 0.

THEOREM 3.1. Let g be a self map of a metric space (X, d) which is g-orbitally complete.

Suppose that H is a semi-group of self maps ofX such that H C C8 and that g has property P relative to

H. If g(H(a)) C H(a) and H(a) is bounded for all a 6 X, then g has a contractive point c; i.e., g"(x)

c for all x E X. Moreover, c g(c) h(c) for all h 6 H if g is continuous at c

PROOF. Let a 6 X. By Theorem 2.1, since H(a) is bounded, g"(a) c for some c 6 X But

gn(x) Cx 6 X for any x 6 X since H(x) is bounded. We show Cx c for any x 5 X. To this end, let

x 6 X. Then H(x)t.J H(a) is bounded. Since g has property P relative to H and H C C8, Note 3.1

implies that for all n 6 N we have:

d(g"(a), g"(x)) <_ P"(d(r.u., s.v.)), (3.3)
where r., sn 6 H and unv. 6 {a, x}; hence, r.un, s.v. E H(a)tO H(x) for n E N. But H(a)tJ H(x) is

bounded, and so 3 M > 0 such that d(r,un, snv.) < M for all n. Thus, pn(d(rnu., s.v.)) < P"(M)--*
0 as n co. Hence (3.3) and the above imply:

d(c, c)= .lirnood(g"(a), g"(x))= 0.

Thus c Cx. If g is continuous at c, then c g(c) But since gn(x) c for all x, c is the only fixed

point of g. Therefore, c h(c) for all h 6 H by Proposition 3.1. El
COROLLARY 3.2. Let g be a self map of a metric space (X, d) which is g-orbitaily complete.

Suppose that Os(x is bounded for all x 6 X. If g has property P relative to 08, then 3 z E X such that

gn(x) z for all x 6 X. z is a unique fixed point of g iff the function F(x) d(x, g(x)) is lower

semicontinuous at z.

PROOF. Since trivially, O C C and g(Os(x)) C Os(x) for all x 6 X, Corollary 3.2 follows

immediately from Theorem 3.1 (with the observation that the last statememt is a well known

consequence of "g"(x)--, z ") El
We conclude with a theorem (rephrased) by Jachymski [5] which generalizes theorems of

Rhoades and Watson [4], and which is a consequence of our Corollary 2.3.

THEOREM 2. [51 Assume that f is a generalized contraction, and (X, d) is f-orbitally complete.
If lim Q"(s) 0 for s E [0, co) and lim (s Q(s)) co, then there exists z E X such that f"x z

for any x 6 X. z is a unique fixed point of f if and only if the function F(x) d(x, f(x)) is lower

semicontinuous at z.

To see that Theorem 2. [5] does indeed follow from Corollary 2.3, first observe that (as noted

before) a generalized contraction satisfies (*’) of Corollary 2.3. Moreover, Lemma 3. [5] tells us that if
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lim (s Q(s)) oo, then the orbits Or(x) are bounded for all x E X. Therefore, Corollary 2.3 assures

us that z E X such that fn(x) z for all x ( X. The assertion that z is the unique fixed point of f

follows as in the proof of Corollary 3.2

4. RETROSPECT. In closing we emphasize the general nature and utility of the semi-groups

H of self maps employed. For example, in Corollary 2 2 H is any family of continuous self maps closed

under composition with H(a) bounded at some one point a X no commutativity requirements are

imposed. Corollary 2.3 demonstrates the utility of options provided by H in letting H Og. And

Example 1.4 indicates how, when given a map g:X X, we can generate semigroups H which satisfy

g(H(a)) C H(a).
Note also that Hausdorff semi-metric spaces (X; d) generalize metric spaces, even if the semi-

metric d is lower semi-continuous. In fact, Cook [8] provides an example of a semi-metric space with a

continu0u.8 semi-metric which is developable but not normal, and hence not a metric

A final comment. The semi-group Cg has been used to some extent in fixed point research See,

e.g., [9, 10, 11].
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