FIXED POINT THEOREMS FOR SEMI-GROUPS OF SELF MAPS OF SEMI-METRIC SPACES

G. JUNGCK

Department of Mathematics Bradley University Peoria, IL, 61625

(Received May 2, 1996 and in revised form January 2, 1997)

ABSTRACT. We use selected semi-groups of self maps of a semi-metric space to obtain fixed point theorems for single maps and for families of maps – theorems which generalize results by Browder, Jachymski, Rhoades and Walters, and others. A basic tool in our approach is the concept of commuting maps.

KEY WORDS AND PHRASES: Semi-metric, semi-group, commuting maps, fixed points. 1991 AMS SUBJECT CLASSIFICATION CODES: Primary 54E25, 54H25.

1. INTRODUCTION. By a semi-group of maps we shall mean a family H of self maps of a set X which is closed with respect to composition of maps. Thus, if $f,g \in H$, then $f \circ g \in H$. Since composition of maps is associative, H is indeed a semi-group with respect to composition. We shall write fg for $f \circ g$ and fx for f(x) when convenient and confusion is not likely.

We shall utilize the following semi-groups of maps in subsequent sections.

- 1.1. Let $g: X \to X$, and $H = O_g = \{ g^n : n \in N \cup \{0\} \}$, where N is the set of positive integers, $g^o = i_d$ the identity map, $g^1 = g$ and $g^{n+1} = g \circ g^n$.
- 1.2. Let $g:X \to X$, and $H = C_g = \{f:X \to X \mid fg = gf\}$. C_g is a semi-group. For if $f,h \in C_g$, then (fh)g = f(hg) = f(gh) = (fg)h = (gf)h = g(fh), and thus, $fh \in C_g$.
- 1.3. $H = \{i_d\}$, and
- 1.4 If f,g: $X \to X$ and fg = gf, we can let H = { $f^n g^m$: $n,m \in N \cup \{0\}$ }.

If H is a semi-group of self maps of a set X and $a \in X$, then $H(a) = \{h(a): h \in H\}$.

Consequently, if g:X → X and H = O_g, O_g(a) = {gⁿ(a) : n ∈ N ∪ {0}}, and is called the orbit of g at a. Just as we use semi-groups of maps to generalize the concept of orbits, we shall use semi-metric spaces to generalize results pertaining to metric spaces. We need the following definitions.

DEFINITION 1.1 A symmetric on a set X is a function d: $XxX \rightarrow [0, \infty)$ such that d(x, y) = 0 iff x = y and d(x, y) = d(y, x) for all $x, y \in X$.

Given a symmetric d on a set X, we generate an induced topology t(d) for X as follows. For $x \in X$ and $\epsilon > 0$, we let $S_{\epsilon}(x) = \{ y \in X : d(x, y) < \epsilon \}$. Then t(d) consists of all subsets U of X such that for each $p \in U$, $S_{\epsilon}(p) \subseteq U$ for some $\epsilon > 0$. Just as in the case of a metric, t(d) is a topology on X. However, if d is a symmetric, the sets $S_{\epsilon}(x)$ need not be neighborhoods of x. A semi-metric is a symmetric d such that all sets $S_{\epsilon}(x)$ are neighborhoods of x; i.e., $\exists U \in t(d)$ such that $x \in U \subseteq S_{\epsilon}(x)$. It

is easy to verify that if d is a semi-metric, then a sequence $\{x_n\}$ in X converges to $x \in X$ in the topology t(d) iff $d(x_n, x) \rightarrow 0$. This is the property we desire. Hence, the following terminology.

DEFINITION 1.2 A semi-metric space is a topological space, denoted by (X; d), with topology t(d) induced on the set X by a semi-metric d.

For further discussion of symmetrics and semi-metrics refer to [1] or [2]. In this context, we note that a semi-metric need not be Hausdorff (or T_2) Example 2.2 in [2] gives an instance of such a semi-metric. Since we desire uniqueness of limits, we shall in most instances require that a semi-metric space (X; d) be Hausdorff. Note also that – as in metric spaces – we shall say a semi-metric space (X; d) is *complete* iff every Cauchy sequence in X converges to a point in X. If $g: X \to X$, then (X; d) is *gorbitally complete* iff every Cauchy sequence in $O_g(x)$ converges to a point in X for all $x \in X$. A function $F.X \to [0, \infty)$ is lower semicontinuous iff $F(x) \leq \liminf_{n \to \infty} F(x_n)$ when $\{x_n\}$ is a sequence in X converging to x.

To produce fixed points we use a contractive function $P:[0, \infty) \rightarrow [0, \infty)$ which is nondecreasing and which satisfies: $\lim_{n\to\infty} P^n(t) = 0$ for each $t \in [0, \infty)$. Throughout this paper, P will denote such a map, and \mathcal{P} will denote the family of all such maps P.

2. FIXED POINT THEOREMS. The major results in this paper evolve from the following lemma.

LEMMA 2.1. Let X be a set, $g: X \to X$, and let $d: XxX \to [0, \infty)$. Let H be a semi-group of maps $h X \to X$ such that $H \subset C_g$ Suppose that for each pair $x, y \in X$ there is a choice of r = r(x,y), $s=s(x,y) \in H$ and $u, v \in \{x,y\}$ for which

(i) $d(gx, gy) \leq P(d(ru, sv))$.

Then, if $n \in N$, for each pair $x, y \in X \exists r_n, s_n \in H$ and $u_n, v_n \in \{x, y\}$ such that

(ii) $d(g^nx, g^ny) \leq P^n(d(r_nu_n, s_nv_n))$.

PROOF. (ii) holds for n=1 by (i), so suppose $n \in N$ for which (ii) is true. Then, if $x, y \in X$,

$$d(g^{n+1}x, g^{n+1}y) = d(g(g^nx), g(g^ny)) \le P(d(ru, sv)),$$
(2.1)
where $r, s \in H$ and $u, v \in \{g^nx, g^ny\}, by (i).$

Specifically, $u = g^n u_o$, where $u_o \in \{x, y\}$ and $v = g^n v_o$ with $v_o \in \{x, y\}$. Thus $d(ru, sv) = d(r(g^n u_o), s(g^n v_o))$ where $u_o, v_o \in \{x, y\}$. And since $r, s \in H \subset C_g$, $d(ru, sv) = d(g^n(ru_o), g^n(sv_o)) \le P^n(d(r_n u_n, s_n v_n))$, by (ii), (2.2) where $r_n, s_n \in H$ and $u_n, v_n \in \{ru_o, sv_o\}$.

Then $r_n u_n \in \{(r_n r)u_o, (r_n s)v_o\}$, where $r_n r, r_n s \in H$ (a semi-group). So, $r_n u_n = r_{n+1}u_{n+1}$, where $r_{n+1} \in H$ (i.e., $r_{n+1} \in \{r_n r, r_n s\}$) and $u_{n+1} \in \{u_o, v_o\} \subset \{x, y\}$. Similarly, $s_n v_n = s_{n+1}v_{n+1}$, where $s_{n+1} \in H$ and $v_{n+1} \in \{x, y\}$. Thus (2.2) implies

 $d(ru, sv) \leq P^{n}(d(r_{n+1}u_{n+1}, s_{n+1}v_{n+1})), \text{ with } r_{n+1}, s_{n+1} \in H \text{ and } u_{n+1}, v_{n+1} \in \{x, y\}.$ (2.3)

But P is nondecreasing; therefore, (2.1) and (2.3) imply

 $d(g^{n+1}x, g^{n+1}y) \le P(P^n(d(r_{n+1}u_{n+1}, s_{n+1}v_{n+1})) = P^{n+1}(d(r_{n+1}u_{n+1}, s_{n+1}v_{n+1}),$ with $r_{n+1}, s_{n+1} \in H$ and $u_{n+1}, v_{n+1} \in \{x, y\}$. Thus, (ii) is true for all n, by induction.

THEOREM 2.1 Let (X; d) be a T_2 semi-metric space. Let $g: X \to X$ and let (X; d) be gorbitally complete. Suppose H is a semi-group of self maps of X such that $H \subset C_g$, and there is an $a \in X$ for which H(a) is bounded and $g(H(a)) \subset H(a)$. If for each $x, y \in X \exists a$ choice of $r, s \in H$ and $u, v \in \{x, y\}$ such that

(*)
$$d(gx, gy) \leq P(d(ru, sv))$$
,

127

then $g^n(a) \to c$ for some $c \in X$. If g is continuous at c, then g(c) = c. If d is lower semicontinuous, then c is a fixed point for all $h(\in H)$ continuous at c. Moreover, if g and each $h \in H$ are continuous at c, then c is the unique common fixed point of g and the family H.

PROOF. We first prove that $\{g^n(a)\}$ is Cauchy. By Lemma 2.1., for each pair $n,k \in N$, there is a choice of $r_n, s_n \in H$ and $u_n, v_n \in \{a, g^ka\}$ such that

$$d(g^{n}(a), g^{n+k}(a)) = d(g^{n}(a), g^{n}(g^{k}(a))) \leq P^{n}(d(r_{n}u_{n}, s_{n}v_{n})).$$
(2.4)

Now $r_n \in H$ implies $r_n a \in H(a)$ and $r_n g^k(a) = g^k(r_n a) \in H(a)$, since $g(H(a)) \subseteq H(a)$ implies that $g^k(H(a)) \subseteq H(a)$. Thus $r_n u_n \in H(a)$. Similarly, $s_n v_n \in H(a)$. But H(a) is bounded, so $\exists M \ge 0$ such that $d(x, y) \le M$ for $x, y \in H(a)$. Thus, $d(r_n u_n, s_n v_n) \le M$ for $n \in N$. Then (2.4) implies

$$\mathbf{i}(\mathbf{g}^{\mathbf{n}}(\mathbf{a}), \mathbf{g}^{\mathbf{n}+\mathbf{k}}(\mathbf{a})) \leq \mathbf{P}^{\mathbf{n}}(\mathbf{M}), \text{ for } \mathbf{n}, \mathbf{k} \in \mathbf{N}$$

$$(2.5)$$

since P is nondecreasing. But $P^n(M) \to 0$ as $n \to \infty$. So given $\epsilon > 0$, $\exists n_o \in N$ such that for any $m > n \ge n_o$, (2,5) implies $d(g^n(a), g^m(a)) \le P^n(M) < \epsilon$, with m=n+k. Consequently, $\{g^n(a)\}$ is Cauchy.

Since (X; d) is g-orbitally complete, $g^n(a)$, $g^{n+1}(a) \rightarrow c$ for some $c \in X$. If g is continuous, $g(g^n(a)) = g^{n+1}(a) \rightarrow g(c)$; thus, c = g(c) since X is Hausdorff.

Now suppose that d is lower semicontinuous and that $h(\in H)$ is continuous at c. Then, since $H\subseteq C_g$ and $g^n(a)\to c$,

$$g^{n}(h(a)) = h(g^{n}(a)) \rightarrow h(c).$$
(2.6)

But (*) and Lemma 2.1 tell us that $\exists r_n, s_n \in H$ and $u_n, v_n \in \{a, h(a)\}$ such that

$$d(g^{n}(a), g^{n}(h(a))) \leq P^{n}(d(r_{n}u_{n}, s_{n}v_{n})).$$
 (2.7)

Then $r_n u_n = r_n a \in H(a)$ or $r_n u_n = r_n h(a) \in H(a)$ $(r_n h \in H, \text{ since } H \text{ is a semi-group.})$. Thus, in either event, $r_n u_n \in H(a)$. In like manner, we conclude that $s_n v_n \in H(a)$. Then, as above, $d(r_n u_n, s_n v_n) \leq M$ for $n \in N$, which implies by (2.7)

$$d(g^{n}(a), g^{n}(h(a))) \leq P^{n}(M) \rightarrow 0.$$
(2.8)

But since $g^n(a) \to c$, (2.6) implies that $(g^n(a), g^n(h(a))) \to (c, h(c))$ in XxX. Since d is lower semicontinuous, $d(c, h(c)) \leq \lim_{n \to \infty} d(g^n(a), g^n(h(a))) = 0$ by (2.8), so h(c) = c.

To complete the proof we have yet to show that if c is a common fixed point for g and every $h \in H$, then c is the only such point. So suppose that $z \in X$ and that z = g(z) = h(z) for all $h \in H$. Then by (*) and Lemma 3.1, we can write:

$$\mathbf{d}(\mathbf{c}, \mathbf{z}) = \mathbf{d}(\mathbf{g}^{\mathbf{n}}(\mathbf{c}), \mathbf{g}^{\mathbf{n}}(\mathbf{z})) \le \mathbf{P}^{\mathbf{n}}(\mathbf{d}(\mathbf{r}_{\mathbf{n}}\mathbf{u}_{\mathbf{n}}, \mathbf{s}_{\mathbf{n}}\mathbf{v}_{\mathbf{n}}))$$

$$(2.9)$$

where $r_n, s_n \in H$ and $u_n, v_n \in \{c, z\}$. But then $r_n u_n \in \{c, z\}$. Similarly, $s_n v_n \in \{c, z\}$. Therefore, $d(r_n u_n, s_n v_n) = 0$ or d(c, z). Thus (2.9) says that $d(c, z) \leq P^n(d(c, z))$. Since $P^n(d(c, z)) \rightarrow 0$, c = z; i.e., c is unique. \Box

The following example shows that the family H in Theorem 2.1 can have fixed points other than the unique common fixed point of g and H.

EXAMPLE 2.1. Let $X=\{0, 1\}$, g(x) = 0 for $x \in X$ h(x) = x for $x \in X$. Let d(x,y) = |x - y| and $H = \{h^n : n \in N\}$. Since $h^n(x) = x$ for $n \in N$, $H = \{i_d\}$. Since d(gx, gy) = 0 for all $x, y \in X$, it is immediate that g and H satisfy the hypothesis of Theorem 3.1 with a = 0, and 1 is a fixed point of H but not of g.

The first corollary provides conditions necessary and sufficient to ensure that a family H of continuous self maps of a semi-metric space has a fixed point.

COROLLARY 2.1. Let (X; d) be a complete Hausdorff semi-metric space with d lower semicontinuous. A semi-group H of continuous self maps of X has a common fixed point iff H(a) is bounded for some $a \in X$, and $\exists P \in \mathcal{P}$ and a continuous self map g of X which satisfies the following.

- 1. $H \subseteq C_g$ and $g(H(a)) \subseteq H(a)$
- 2. For any $x,y \in X$, \exists a choice of r, $s \in H$ and u, $v \in \{x, y\}$ such that $d(gx, gy) \leq P(d(ru, sv))$.

PROOF. That the conditions are sufficient follows immediately from Theorem 2.1.. To prove necessity, suppose $a \in X$ and that h(a) = a for $h \in H$. Then $H(a) = \{a\}$ and is thus bounded. Let g(x) = a for $x \in X$. It is immediate that gh = hg for all $h \in H$, so $H \subseteq C_g$. Moreover, g(h(a)) = a for all $h \in H$, so that $g(H(a)) \subseteq H(a)$ and statement 1. of the Corollary holds. Statement 2. follows upon noting that d(gx, gy) = d(a, a) = 0 for all $x, y \in X$. (We can let P(t) = t/2, e.g..)

NOTE 2.1. The next result and proof suggest that the function g of Theorem 2.1 may have an infinitude or unbounded set of fixed points, although H may have just one. Example 3.1 in the next section confirms this.

COROLLARY 2.2. Let (X; d) be a complete Hausdorff semi-metric space with d lower semicontinuous. A semi-group H of continuous self maps of X has a common fixed point provided \exists $a \in X$ such that H(a) is bounded, and for any $x, y \in X \exists r, s \in H$ and $u, v \in \{x, y\}$ such that

 $d(x, y) \leq P(d(ru, sv)).$

PROOF. Let $g = i_d$, the identity map.

COROLLARY 2.3. Let g be a self map of a metric space (X, d) which is g-orbitally complete. If $\exists a \in X$ such that $O_g(a)$ is bounded and $k \in N$ such that for each pair $x, y \in X$ there is a choice of n=n(x, y), $m=m(x, y) \in N$ and $u, v \in \{x, y\}$, for which

PROOF. Let $H = O_g$. Note that $H \subseteq C_{g^k}$, $g(H(a)) = g(O_g(a)) \subseteq O_g(a)$, and that $g^k(H(a)) \subseteq H(a)$. Since d is a metric, d is actually uniformly continuous [3]. Thus, $g^{kn}(a) \rightarrow c$ as $n \rightarrow \infty$ for some $c \in X$, by Theorem 2.1 applied to g^k . If g is continuous at c, each $g^n \in H(=O_g)$ is continuous at c. So, as an element of H, g(c) = c by Theorem 2.1..

We have yet to prove that $g^n(a) \to c$ and that $g^n(x_0) \to c$ for x_0 with $O_g(x_0)$ bounded. To see that $g^n(a) \to c$, let $\epsilon > 0$. Since $(g^k)^m(a) \to c$ as $m \to \infty$, $\exists m_1 \in N$ such that

$$d(g^{km}(a), c) < \epsilon/2, \text{ for } m > m_1$$
 (2.10)

By Lemma 2.1 and (*') of the hypothesis, if $m \in N$, for each pair x, $y \in X$ there exist $r_m, s_m \in H$ and $u_m, v_m \in \{x, y\}$ such that

$$d((g^{k})^{m}(x), (g^{k})^{m}(y)) \leq P^{m}(d(r_{m}u_{m}, s_{m}v_{m})).$$
(2.11)

Since $O_g(a)$ is bounded, $\exists M \ge 0$ such that

$$d(r_m u_m, s_m v_m) \le M \text{ if } r_m u_m \text{ and } s_m v_m \text{ are in } O_g(a). \tag{2.12}$$

Now $P^{m}(M) \rightarrow 0$ as $m \rightarrow \infty$, so we can choose $m_{0} \in N$ such that

$$m_o > m_1$$
 and $P^{m_o}(M) < \epsilon/2.$ (2.13)

Let $n > km_o$. Then $n = km_o + t_n$ for some $t_n \in N$, and (2.11) implies

$$d(g^{n}(a), g^{km_{o}}(a)) = d(g^{km_{o}}(g^{t_{n}}(a)), g^{km_{o}}(a)) \le P^{m_{o}}(d(r_{m_{o}}u_{m_{o}}, s_{m_{o}}v_{m_{o}}))$$
(2.14)

where $r_{m_o} \in H = O_g$, $u_{m_o} \in \{a, g^{t_n}(a)\}$, so that $r_{m_o}u_{m_o} \in O_g(a)$. Similarly, $s_{m_o}v_{m_o} \in O_g(a)$.

Therefore, (2.12) implies that

$$\begin{array}{ll} d(r_{m_o}u_{m_o}, \ s_{m_o}v_{m_o}) &\leq M, \ \text{and since P is nondecreasing, we have} \\ P^{m_o}(\ d(r_{m_o}u_{m_o}, \ s_{m_o}v_{m_o})) &\leq P^{m_o}(M) < \epsilon/2 \ , \ \text{by (2.13)}. \ \ \text{Thus (2.14) implies} \\ & d(g^n(a), \ g^{km_o}(a)) < \epsilon/2. \end{array}$$

But then (2.10) with $m = m_0$ and the triangle inequality imply that $d(g^n(a), c) < \epsilon$, since $m_0 > m_1$. We therefore conclude that $g^n(a) \rightarrow c$

If $x_o \in X$ such that $O_g(x_o)$ is bounded, the above argument shows us that $\exists p \in X$ such that $g^n(x_o) \to p$. To see that p = c, first observe that $S = O_g(x_o) \cup O_g(a)$ is also bounded since d is a metric; i.e., $\exists M_o \ge 0$ such that $d(x, y) \le M_o$ if $x, y \in S$. We can therefore apply (*') and Lemma 2.1 as before to conclude that

 $d(c, p) = \lim_{m \to \infty} d(g^{km}(a), g^{km}(x_o)) \leq \lim_{m \to \infty} P^m(M_o) = 0. \Box$

The following example shows that the hypothesis in Corollary 2.3 that the orbit $O_g(a)$ be bounded for at least one $a \in X$ is indeed necessary.

EXAMPLE 2.2. Let $X = [1, \infty)$, P(t) = t/2 for $t \in [0, \infty)$, d(x, y) = |x - y| and g(x) = 3xfor $x, y \in X$. Then $P^n(t) = t/2^n \rightarrow 0$ as $n \rightarrow \infty$, $g: X \rightarrow X$ and d(gx, gy) = |gx - gy| = 3|x - y| $\leq 9/2|x - y| = 1/2 |9x - 9y| = 1/2 |g^2x - g^2y| = P(d(g^2x, g^2y))$. But since $g^n(x) = 3^n x \rightarrow \infty$ for each $x \in X$, $O_g(x)$ is bounded for no $x \in X$ and g has no fixed point.

In [4] Rhoades and Watson introduced the concept of a "generalized contraction".

DEFINITION 2.1 Let (X, d) be a metric space. A function $f: X \to X$ is a generalized contraction (with respect to Q) if $\exists p,q \in N$ such that for all $x,y \in X$

(i) $d(f^{p}x, f^{q}y) \leq Q(M(x, y)),$

where

 $M(x, y) = \max\{d(f^{i}x, f^{j}y), d(f^{i}x, f^{j'}x), d(f^{j}y, f^{j'}y) : 0 \le i, i' \le p, 0 \le j, j' \le q\}.$ (Q is a nondecreasing function Q: $[0, \infty) \rightarrow [0, \infty)$ such that Q(s) < s for s > 0.)

NOTE 2.2. Jachymski [5] studied the relation (i) and observed that it satisfies

(ii) $d(f^{T}x, f^{T}y) \le Q(\max\{d(f^{t}u, f^{j}v): 0 \le i, j \le r \text{ and } u, v \in \{x, y\}\})$

where $r = \max\{p, q\}$, since Q is nondecreasing. But (ii), and hence (i), satisfy the relation (*') in Corollary 2.3. In fact, the following theorem by Jachymski – except the last sentence therein – is a consequence of Corollary 2.3. This last sentence refers to (9) which is essentially (i) above with the restriction that either i, $i' \in \{0, p\}$ or j, $j' \in \{0, q\}$.

THEOREM 4. ([5]) Let f be a generalized contraction and let (X, d) be f-orbitally complete. If $\lim_{n \to \infty} Q^n(s) = 0$ for $s \in [0, \infty)$ and there exists a point $x_o \in X$ with a bounded orbit, then the sequence $\{f^n x_o\}$ converges to some $z \in X$. Moreover, for any $x \in X$ with a bounded orbit, $f^n x \to z$. Furthermore, if f satisfies (9) z is the unique fixed point of f.

The following example shows that if we use the more general contractive property (*') of Corollary 2.3, continuity at c or restrictions of the ilk found in (9) of Theorem 4 are needed to ensure that the point c (or z) is a fixed point.

EXAMPLE 2.3. Let X = [0, 1] and let d(x, y) = |x - y|. Define $g: X \to X$ by $g(x) = \frac{1}{2}(x+1)$ for $x \in [0, 1)$ and $g(1) = \frac{1}{2}$. Then it is easy to see that $g^n(x) = (x - 1)2^{n}+1$ ($x \neq 1$), and $g^n(1) = 1 - 2^{-n}$ for $n \in \mathbb{N}$. Thus, $g^n(a) \to 1$ for any $a \in X$. Since X is bounded, $O_g(a)$ is bounded for each $a \in X$. Thus, to see that the hypothesis of Corollary 2.3 is satisfied, we need only to verify that (*') holds. A check shows that

$$d(g^{2}x, g^{2}y) = \frac{1}{2} d(gx, gy) \text{ for all } x, y \in X.$$
(2.15)

Thus, (*') holds trivially with k=2, n = m = 1, and u = x, v = y for all x, y in [0, 1]. However, $g^n(a) \rightarrow 1$ for any a, but g is not continuous at 1 and 1 is not a fixed point of g. Note that property (9) of Jachymski's Theorem 4. does not hold since in this instance p = q = 2, and g^2 , g^o do not appear in the right member of (2.15).

3. THE BOUNDED CASE. The following is an example of a function g and a family H which satisfy the hypothesis of Theorem 2.1 and for which the set F_g – the set of fixed points of g – is not bounded We then consider the significance of this phenomenon.

EXAMPLE 3.1. Let $X = [0, \infty)$ and d(x, y) = |x - y| for $x, y \in X$. Let g(x) = x for $x \in X$; i.e., g is the identity map. So $F_g = [0, \infty)$, and is unbounded. Let P(t) = t/2 for $t \in [0, \infty)$ and define $h_n(x) = nx$ for $x \in X$ and $n \in N$. If $H = \{h_n : n \in N\}$, and $h_n, h_m \in H$, then $h_n h_m(x) = h_n(h_m(x)) = h_n(mx) = (nm)x = h_{nm}(x)$. Thus $h_n h_m = h_{nm} \in H$, so that H is indeed a semi-group. Since g is the

identity, the conditions $H \subseteq C_g$ and $g(H(a)) \subseteq H(a)$ (for any $a \in X$) are satisfied trivially. Moreover, $d(gx, gy) = |x - y| \leq \frac{3}{2} |x - y| = \frac{1}{2} |3x - 3y| = P(d(h_3x, h_3y))$, so that (*) and hence the hypothesis of Theorem 2.1 is satisfied. a=0 is the unique fixed point for g and H, but g has an infinitude of other fixed points.

In the remainder of the paper, if (X; d) is a T₂ semi-metric space and $g: X \to X$, we shall say that g has property P relative to a semi-group H of self maps of X iff for each pair x, $y \in X \exists r, s \in H$ and u, $v \in \{x, y\}$ such that

(*) $d(gx, gy) \leq P(d(ru, sv))$.

NOTE 3.1. If a function $g: X \to X$ has property P relative to a semi-group H of self maps of X for which $H \subseteq C_g$, Lemma 2.1 implies that if $n \in N$, for any pair $x, y \in X$ there exist $r_n, s_n \in H$ and $u_n, v_n \in \{x, y\}$ such that

 $(**) d(g^n x, g^n y) \leq P^n(d(r_n u_n, s_n v_n))$

PROPOSITION 3.1. Let (X; d) be a T₂ semi-metric space and let $g: X \to X$. Suppose H is a semigroup of self maps of X such that $H \subseteq C_g$. If g has property P relative to H and F_g is nonempty and bounded, then

(i) F_g is a singleton {c}, and (ii) c = g(c) = h(c) for all $h \in H$.

PROOF. To prove (i), we first note that $h(F_g) \subseteq F_g$ for all $h \in H$. For if $h \in H$ and a = g(a), then g(h(a)) = h(g(a)) = h(a), so that $h(a) \in F_g$. Moreover, since F_g is bounded, $\exists M \ge 0$ such that $d(a, c) \le M$ for $a, c \in F_g$.

Now by hypothesis, $\exists c \in F_g$. We assert that c is unique. For suppose $a \in F_g$. Then Note 3.1 says that we can choose $u_nv_n \in \{a, c\}$ and $r_n, s_n \in H$ such that

$$d(a, c) = d(g^{n}(a), g^{n}(c)) \le P^{n}(d(r_{n}u_{n}, s_{n}v_{n})).$$
(3.1)

But since $h(F_g) \subseteq F_g$ for $h \in H$, and since $a, c \in F_g$, $r_n u_n, s_n v_n \in F_g$. So by the above,

$$d(r_n u_n, s_n v_n) \leq M.$$

Therefore, since P and hence P^n is nondecreasing, (3.1) yields:

$$d(a, c) \leq P^{n}(M) \text{ for } n \in \mathbb{N}.$$
(3.2)

Since $P^n(M) \rightarrow 0$ as $n \rightarrow \infty$, (3.2) implies that a = c.

(ii) is an immediate consequence of (i), since $(h \in H) \Rightarrow h(F_g) \subseteq F_g$. Therefore, if $h \in H$, $h(c) \in \{c\}$; i.e, h(c) = c. \Box

COROLLARY 3.1. Let (X; d) be a bounded and complete T_2 semi-metric space. Let g: $X \rightarrow X$ and let H be a semi-group of self maps of X such that $H \subset C_g$ and $g(H(a)) \subset H(a)$ for $a \in X$ If g has property P relative to H, then for each $x \in X \exists a \text{ point } c_x \in X$ such that $g^n(x) \rightarrow c_x$. If g is continuous at one such c_x , then F_g is a singleton, {c}, and $c_x = c$ for all x. Moreover, c = h(c) for all $h \in H$.

PROOF. Since X is bounded, H(x) is bounded for each $x \in X$. Therefore, Theorem 2.1 implies that $g^n(x) \rightarrow c_x$ for some $c_x \in X$. If g is continuous at one such c_x , then $g(c_x) = c_x$. But then F_g is bounded and nonempty, so that Proposition 3.1 implies that $F_g = \{c\}$, a singleton, and that c = h(c) for all $h \in H$. \Box

Corollary 3.1 has Theorem 1.[6] by Browder and a result by Zitarosa [7] on contractive self maps of a bounded complete metric space as special cases with $H = \{i_d\}$.

The proof of our next theorem, as did the proof of Corollary 2.3, requires that the union of two bounded sets be bounded. So we again need a metric. Also, observe that in Example 3.1 the set $H(a) = \{ na : n \in N \}$ is unbounded for $a \neq 0$.

THEOREM 3.1. Let g be a self map of a metric space (X, d) which is g-orbitally complete. Suppose that H is a semi-group of self maps of X such that $H \subset C_g$ and that g has property P relative to H. If $g(H(a)) \subset H(a)$ and H(a) is bounded for all $a \in X$, then g has a contractive point c; i.e., $g^n(x) \rightarrow c$ for all $x \in X$. Moreover, c = g(c) = h(c) for all $h \in H$ if g is continuous at c

PROOF. Let $a \in X$. By Theorem 2.1, since H(a) is bounded, $g^n(a) \rightarrow c$ for some $c \in X$ But $g^n(x) \rightarrow c_x \in X$ for any $x \in X$ since H(x) is bounded. We show $c_x = c$ for any $x \in X$. To this end, let $x \in X$. Then $H(x) \cup H(a)$ is bounded. Since g has property P relative to H and $H \subset C_g$, Note 3.1 implies that for all $n \in N$ we have:

$$d(g^{n}(\mathbf{a}), g^{n}(\mathbf{x})) \leq P^{n}(d(r_{n}u_{n}, s_{n}v_{n})), \qquad (3.3)$$

where r_n , $s_n \in H$ and $u_n v_n \in \{a, x\}$; hence, $r_n u_n$, $s_n v_n \in H(a) \cup H(x)$ for $n \in N$. But $H(a) \cup H(x)$ is bounded, and so $\exists M \ge 0$ such that $d(r_n u_n, s_n v_n) \le M$ for all n. Thus, $P^n(d(r_n u_n, s_n v_n)) \le P^n(M) \rightarrow 0$ as $n \to \infty$. Hence (3.3) and the above imply:

 $d(c, c_x) = \lim_{x \to a} d(g^n(a), g^n(x)) = 0.$

Thus $c = c_x$. If g is continuous at c, then c = g(c) But since $g^n(x) \rightarrow c$ for all x, c is the only fixed point of g. Therefore, c = h(c) for all $h \in H$ by Proposition 3.1. \Box

COROLLARY 3.2. Let g be a self map of a metric space (X, d) which is g-orbitally complete. Suppose that $O_g(x)$ is bounded for all $x \in X$. If g has property P relative to O_g , then $\exists z \in X$ such that $g^n(x) \to z$ for all $x \in X$. z is a unique fixed point of g iff the function F(x) = d(x, g(x)) is lower semicontinuous at z.

PROOF. Since trivially, $O_g \subset C_g$ and $g(O_g(x)) \subset O_g(x)$ for all $x \in X$, Corollary 3.2 follows immediately from Theorem 3.1 (with the observation that the last statement is a well known consequence of " $g^n(x) \rightarrow z$ ") \Box

We conclude with a theorem (rephrased) by Jachymski [5] which generalizes theorems of Rhoades and Watson [4], and which is a consequence of our Corollary 2.3.

THEOREM 2. [5] Assume that f is a generalized contraction, and (X, d) is f-orbitally complete. If $\lim_{n\to\infty} Q^n(s) = 0$ for $s \in [0, \infty)$ and $\lim_{s\to\infty} (s - Q(s)) = \infty$, then there exists $z \in X$ such that $f^n x \to z$ for any $x \in X$. z is a unique fixed point of f if and only if the function F(x) = d(x, f(x)) is lower semicontinuous at z.

To see that Theorem 2. [5] does indeed follow from Corollary 2.3, first observe that (as noted before) a generalized contraction satisfies (*') of Corollary 2.3. Moreover, Lemma 3. [5] tells us that if

 $\lim_{s\to\infty} (s - Q(s)) = \infty$, then the orbits $O_f(x)$ are bounded for all $x \in X$. Therefore, Corollary 2.3 assures us that $\exists z \in X$ such that $f^n(x) \to z$ for all $x \in X$. The assertion that z is the unique fixed point of f follows as in the proof of Corollary 3.2

4. **RETROSPECT.** In closing we emphasize the general nature and utility of the semi-groups H of self maps employed. For example, in Corollary 2.2 H is any family of continuous self maps closed under composition with H(a) bounded at some one point $a \in X$ — no commutativity requirements are imposed. Corollary 2.3 demonstrates the utility of options provided by H in letting $H = O_g$. And Example 1.4 indicates how, when given a map $g: X \to X$, we can generate semigroups H which satisfy $g(H(a)) \subset H(a)$.

Note also that Hausdorff semi-metric spaces (X; d) generalize metric spaces, even if the semimetric d is lower semi-continuous. In fact, Cook [8] provides an example of a semi-metric space with a <u>continuous</u> semi-metric which is developable but not normal, and hence not a metric

A final comment. The semi-group C_g has been used to some extent in fixed point research See, e.g., [9, 10, 11].

REFERENCES

- HICKS, TROY L. and RHOADES, B.E., "Fixed points for pairs of mappings in d-complete topological spaces," Internat. J. Math. and Math. Sci. 16 (1993) 259-266
- [2] JUNGCK, G., "Common fixed points for noncontinuous nonself maps on nonmetric spaces," Far East. J. Math. Sci. 4(2)(1996) 199-215.
- [3] JUNGCK, G., "The cohesive property," Proc. Amer. Math. Soc. 84 (1982) 138-142.
- [4] RHOADES, B. E. and WATSON, B., "Generalized contractions and fixed points in metric spaces," Math. Japonica 34 (1989) 975-983.
- [5] JACHYMSKI, JACEK "A generalization of the theorem by Rhoades and Watson for contractive type mappings," *Math. Japonica* 38 no. 6 (1993) 1095-1102.
- [6] BROWDER, F. "Remarks on fixed point theorems of contractive type," Nonlinear Analysis T. M.
 A. 3 (1979) 657-661.
- [7] ZITAROSA, A. "Una generalizzazione del teorema di Banach sulle contrazioni," Mathematiche 23 (1968) 417- 424.
- [8] COOK, H. "Cartesian products and continuous semi-metrics," Proceedings of Point Set Topology Conference (Editor, E. Grace), Arizona State University, Tempe, 1967
- [9] JUNGCK, G. "Periodic and fixed points, and commuting mappings," Proc. Amer. Math. Soc. 76 (1979) 333-338.
- [10] JUNGCK, G. "Common fixed points for commuting and compatible maps on compacta," Proc. Amer. Math. Soc. 103(1988) 977-983.
- [11] ZEQING, LIU "A note on fixed point in compact metric spaces," Indian J. Math. 34 (1992) 173-176.