SUBCONTRA-CONTINUOUS FUNCTIONS

C.W. BAKER

Department of Mathematics Indiana University Southeast New Albany, Indiana 47150

(Received December 27, 1996)

ABSTRACT. A weak form of contra-continuity, called subcontra-continuity, is introduced. It is shown that subcontra-continuity is strictly weaker than contra-continuity and stronger than both subweak continuity and sub-LC-continuity. Subcontra-continuity is used to improve several results in the literature concerning compact spaces.

KEY WORDS AND PHRASES: subcontra-continuity, contra-continuity, subweak continuity. sub-LC-continuity.

1991 AMS SUBJECT CLASSIFICATION CODE: 54C10

1. INTRODUCTION

In [1] Dontchev introduced the notion of a contra-continuous function. In this note we develop a weak form of contra-continuity, which we call subcontra-continuity. We show that subcontracontinuity implies both subweak continuity and sub-LC-continuity. We also establish some of the properties of subcontra-continuous functions. In particular it is shown that the graph of a subcontracontinuous function into a T_1 -space is closed. Finally, we show that many of the applications of contra-continuous functions to compact spaces established by Dontchev [1] hold for subcontracontinuous functions. For example, we establish that the subcontra-continuous, nearly continuous image of an almost compact space is compact and that the subcontra-continuous, β -continuous image of an S-closed space is compact.

2. PRELIMINARIES

The symbols X and Y denote topological spaces with no separation axioms assumed unless explicitly stated. The closure and interior of a subset A of a space X are signified by Cl(A) and Int(A), respectively. A set A is regular open (semi-open, nearly open) provided that A = Int(Cl(A)) ($A \subseteq Cl(Int(A))$), $A \subseteq Int(Cl(A))$) and A is regular closed (semi-closed) if its complement is regular open (semi-open). A set A is locally closed provided that $A = U \cap F$, where U is an open set and F is a closed set.

DEFINITION 1. Dontchev [1]. A function $f: X \to Y$ is said to contra-continuous provided that for every open set V in Y, $f^{-1}(V)$ is closed in X.

DEFINITION 2. Rose [2]. A function $f: X \to Y$ is said to be subweakly continuous if there is an open base \mathcal{B} for the topology on Y such that $Cl(f^{-1}(V)) \subseteq f^{-1}(Cl(V))$ for every $V \in \mathcal{B}$.

DEFINITION 3. Ganster and Reilly [3]. A function $f: X \to Y$ is said to be sub-LCcontinuous provided there is an open base \mathcal{B} for the topology on Y such that $f^{-1}(V)$ is locally closed for every $V \in \mathcal{B}$.

DEFINITION 4. A function $f: X \to Y$ is said to be semi-continuous (Levine [4]) (nearly continuous (Ptak [5]), β -continuous (Abd El-Monsef *et al.* [6])) if for every open set V in Y, $f^{-1}(V) \subseteq Cl(Int(f^{-1}(V))) (f^{-1}(V) \subseteq Int(Cl(f^{-1}(V))), f^{-1}(V) \subseteq Cl(Int(Cl(f^{-1}(V)))))$.

DEFINITION 5. Gentry and Hoyle [7]. A function $f: X \to Y$ is said to be c-continuous if, for every $x \in X$ and every open set V in Y containing f(x) and with compact complement, there exists an open set U in X containing x such that $f(U) \subseteq V$.

3. SUBCONTRA-CONTINUOUS FUNCTIONS

We define a function $f: X \to Y$ to be subcontra-continuous provided there exists an open base \mathcal{B} for the topology on Y such that $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Obviously contracontinuity implies subcontra-continuity. The following example shows that the reverse implication does not hold.

EXAMPLE 1. Let X be a nondiscrete T_1 -space and let Y be the set X with the discrete topology. Finally let $f: X \rightarrow Y$ be the identity mapping. If B is the collection of all singleton subsets of Y, then B is an open base for the topology on Y. Since X is T_1 , f is subcontra-continuous with respect to B. Obviously f is not contra-continuous.

Subcontra-continuity is independent of continuity. The function in Example 1 is subcontracontinuous but not continuous. The next example shows that continuity does not imply subcontracontinuity.

EXAMPLE 2 Let $X = \{a, b\}$ be the Sierpinski space with the topology $\mathcal{T} = \{X, \emptyset, \{a\}\}$ and let $f: X \to X$ be the identity mapping. Obviously f is continuous. However, any open base for the topology on X must contain $\{a\}$ and $f^{-1}(\{a\})$ is not closed. It follows that f is not subcontracontinuous.

Since closed sets are locally closed, subcontra-continuity implies sub-LC-continuity. We see from the following theorem that subcontra-continuity also implies subweak continuity.

THEOREM 1. Every subcontra-continuous function is subweakly continuous.

PROOF. Assume $f: X \to Y$ is subcontra-continuous. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Then for $V \in \mathcal{B}$, $Cl(f^{-1}(V)) = f^{-1}(V) \subseteq f^{-1}(Cl(V))$ and hence f is subweakly continuous. \Box

Since a subweakly continuous function into a Hausdorff space has a closed graph (Baker [8]), a subcontra-continuous function into a Hausdorff space has a closed graph. However, the following stronger result holds for subcontra-continuous functions.

THEOREM 2. If $f: X \rightarrow Y$ is a subcontra-continuous function and Y is T_1 , then the graph of f, G(f), is closed.

PROOF. Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Since Y is T_1 , there exists $V \in \mathcal{B}$ such that $y \in V$ and $f(x) \notin V$. Then we see that $(x, y) \in (X - f^{-1}(V)) \times V \subseteq X \times Y - G(f)$. It follows that G(f) is closed. \Box

COROLLARY 1. If $f: X \to Y$ is contra-continuous and Y is T_1 , then the graph of f is closed.

Long and Hendrix [9] proved that the closed graph property implies c-continuity. Therefore we have the following corollary.

COROLLARY 2. If $f: X \rightarrow Y$ is subcontra-continuous and Y is T_1 , then f is c-continuous.

The next two results are also implied by the closed graph property (Fuller [10]).

COROLLARY 3. If $f: X \to Y$ is subcontra-continuous and Y is T_1 , then for every compact subset C of Y, $f^{-1}(C)$ is closed in X.

COROLLARY 4. If $f: X \rightarrow Y$ is subcontra-continuous and Y is T_1 , then for every compact subset C of X, f(C) is closed.

For a function $f: X \to Y$, the graph function of f is the function $g: X \to X \times Y$ given by g(x) = (x, f(x)). We shall see in the following example that the graph function of a subcontra-continuous function is not necessarily subcontra-continuous.

EXAMPLE 3. Let $X = \{a, b\}$ be the Sierpinski space with the topology $\mathcal{T} = \{X, \emptyset, \{a\}\}$ and let $f: X \to X$ be given by f(a) = b and f(b) = a. Obviously f is subcontra-continuous, in fact contra-continuous. Let \mathcal{B} be any open base for the product topology on $X \times Y$. Then there exists $V \in \mathcal{B}$ for which $(a, b) \in V \subseteq \{(a, a), (a, b)\}$. We see that $V = \{(a, a), (a, b)\}$ and that, if $g: X \to X \times X$ is the graph function for f, then $g^{-1}(V) = \{a\}$ which is not closed. Thus the graph function of f is not subcontra-continuous.

However, the following result does hold for the graph function.

THEOREM 3. The graph function of a subcontra-continuous function is sub-LC-continuous.

PROOF. Assume $f: X \to Y$ is subcontra-continuous and let $g: X \to X \times Y$ be the graph function of f. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Then $\{U \times V : U \text{ is open in } X, V \in \mathcal{B}\}$ is an open base for the product topology on $X \times Y$. Since $g^{-1}(U \times V) = U \cap f^{-1}(V)$, we see that g is sub-LC-continuous. \Box

The graph function of a subweakly continuous function is subweakly continuous (Baker [8]) and the graph function of a sub-LC-continuous function is sub-LC-continuous (Ganster and Reilly [3]). It follows that the graph function in Example 3 is subweakly continuous and sub-LC-continuous but not subcontra-continuous. Therefore subcontra-continuity is strictly stronger than sub-LC-continuity and subweak continuity.

THEOREM 4. If Y is a T_1 -space and $f : X \rightarrow Y$ is a subcontra-continuous injection, then X is T_1 .

PROOF. Let x_1 and x_2 be distinct points in X. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Since Y is T_1 and $f(x_1) \neq f(x_2)$, there exists $V \in \mathcal{B}$ such that $f(x_1) \notin V$ and $f(x_2) \in V$. Then $x_1 \in X - f^{-1}(V)$ which is open and $x_2 \notin X - f^{-1}(V)$. \Box

THEOREM 5. Let $A \subseteq X$ and $f: X \to X$ be a subcontra-continuous function such that f(X) = A and $f|_A$ is the identity on A. Then, if X is T_1 , A is closed in X.

PROOF. Suppose A is not closed. Let $x \in Cl(A) - A$. Let B be an open base for the topology on Y for which $f^{-1}(V)$ is closed for every $V \in B$. Since $x \notin A$, we have that $x \neq f(x)$. Since X is T_1 , there exists $V \in B$ such that $x \in V$ and $f(x) \notin V$. Let U be an open set containing x. Then $x \in U \cap V$ which is open. Since $x \in Cl(A)$, $(U \cap V) \cap A \neq \emptyset$. Let $y \in (U \cap V) \cap A$. Since $y \in A$, $f(y) = y \in V$. So $y \in f^{-1}(V)$. Thus $y \in U \cap f^{-1}(V)$ and hence $U \cap f^{-1}(V) \neq \emptyset$. We see that $x \in Cl(f^{-1}(V)) = f^{-1}(V)$ which is a contradiction. Therefore A is closed. \Box

The next result follows easily for the definition.

THEOREM 6. If $f: X \rightarrow Y$ is subcontra-continuous, then for every open set V in Y, $f^{-1}(V)$ is a union of closed sets in X.

Obviously every function with a T_1 -domain satisfies the above condition. However, as we see in the following example, a function with a T_1 -domain can fail to be subcontra-continuous. It follows that the converse of Theorem 6 does not hold.

EXAMPLE 4. Let $X = \mathbb{R}$ with the usual topology and let $f: X \to X$ be the identity mapping. Since X is connected, f is not subcontra-continuous. However, since X is T_1 , f has the property that the inverse image of every (open) set is a union of closed sets.

4. APPLICATIONS TO COMPACT SPACES

In [1] Dontchev establishes that the image of an almost compact space under a contracontinuous, nearly continuous mapping is compact and that the contra-continuous image of a strongly S-closed space is compact. In this section, we strengthen both of these results by replacing contracontinuity with subcontra-continuity. The proofs mostly follow Dontchev's.

DEFINITION 6. Dontchev [1]. A space X is almost compact provided that every open cover of X has a finite subfamily the closures of whose members cover X.

THEOREM 7. The image of an almost compact space under a subcontra-continuous, nearly continuous mapping is compact.

PROOF. Let $f: X \rightarrow Y$ be subcontra-continuous and nearly continuous and assume that X is almost compact. Let B be an open base for the topology on Y for which $f^{-1}(V)$ closed in X for every $V \in \mathcal{B}$. Let \mathcal{C} be an open cover of f(X). For each $x \in X$, let $C_x \in \mathcal{C}$ such that $f(x) \in C_x$. Then let $V_x \in \mathcal{B}$ for which $f(x) \in V_x \subseteq C_x$. Now $f^{-1}(V_x)$ is closed and nearly open. It follows that $f^{-1}(V_x)$ is clopen and hence that $\{f^{-1}(V_x) : x \in X\}$ is a clopen cover of X. Since X is almost compact, there is a finite subfamily $\{f^{-1}(V_{x_i}): i = 1, ..., n\}$ for which $X = \bigcup_{i=1}^{n} Cl(f^{-1}(V_{x_i})) = \bigcup_{i=1}^{n} f^{-1}(V_{x_i}) \subseteq \bigcup_{i=1}^{n} f^{-1}(C_{x_i})$. Thus we have that $f(X) \subseteq \bigcup_{i=1}^{n} C_{x_i}$ and therefore that f(X) is compact. \Box

DEFINITION 7. Dontchev [1]. A space X is strongly S-closed provided that every closed cover of X has a finite subcover.

THEOREM 8. The subcontra-continuous image of a strongly S-closed space is compact.

PROOF. Let $f: X \to Y$ be subcontra-continuous and assume that X is strongly S-closed. Let \mathcal{B} be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Let C be an open cover of f(X). For each $x \in X$, let $C_x \in C$ with $f(x) \in C_x$. Then let $V_x \in \mathcal{B}$ for which $f(x) \in V_x \subseteq C_x$. Since $\{f^{-1}(V_x) : x \in X\}$ is a closed cover of X and X is strongly S-closed, there is a finite subcover $\{f^{-1}(V_{x_i}): i = 1, ..., n\}$ of X. Then we see that $f(X) = f\left(\bigcup_{i=1}^{n} f^{-1}(V_{x_i})\right) = \bigcup_{i=1}^{n} f(f^{-1}(V_{x_i})) \subseteq \bigcup_{i=1}^{n} V_{x_i} \subseteq \bigcup_{i=1}^{n} C_{x_i}$ and hence that f(X) is compact. \Box

In [1] Dontchev also shows that the contra-continuous, β -continuous image of an S-closed space is compact. We extend this result by replacing contra-continuity with subcontra-continuity. The proof parallels that of Dontchev's.

DEFINITION 8. Mukherjee and Basu [11]. A space X is S-closed provided that every semiopen cover of X has a finite subfamily the closures of whose members covers X.

From Herrmann [12], a space X is S-closed if and only if every regular closed cover of X has a finite subcover.

THEOREM 9. The subcontra-continuous, β -continuous image of an S-closed space is compact.

PROOF. Assume that $f: X \rightarrow Y$ is subcontra-continuous and β -continuous and that X is Sclosed. Let B be an open base for the topology on Y for which $f^{-1}(V)$ is closed in X for every $V \in \mathcal{B}$. Let C be an open cover of f(X). Then for each $x \in X$ there exists $C_x \in C$ for which $f(x) \in C_x$. For each $x \in X$, let $V_x \in \mathcal{B}$ such that $f(x) \in V_x \subseteq C_x$. Since f is subcontra-continuous, $\{f^{-1}(V_x): x \in X\}$ is a closed cover of X. The β -continuity of f implies that $f^{-1}(V_x) \subseteq Cl(Int(Cl(f^{-1}(V_x))))$ and therefore we see that $f^{-1}(V_x) = Cl(Int(f^{-1}(V_x)))$ or that

 $f^{-1}(V_x)$ is regular closed. Since X is S-closed, the regular closed cover $\{f^{-1}(V_x) : x \in X\}$ has a finite subcover $\{f^{-1}(V_{x_1}) : i = 1, ..., n\}$. Then we have $f(X) = f\left(\bigcup_{i=1}^{n} f^{-1}(V_{x_i})\right) \subseteq \bigcup_{i=1}^{n} V_{x_i} \subseteq \bigcup_{i=1}^{n} C$ and therefore f(X) is compared. \Box

 $\bigcup_{i=1}^{n} C_{x_{i}} \text{ and therefore } f(X) \text{ is compact. } \square$

In the above proof we showed that, if $f: X \to Y$ is subcontra-continuous and β -continuous, then there exists an open base \mathcal{B} for the topology on Y such that for every $V \in \mathcal{B}$, $f^{-1}(V)$ is regular closed and hence semi-open. Since unions of semi-open sets are semi-open (Arya and Bhamini [13]), it follows that inverse images of open sets are semi-open. Therefore we have the following theorem which strengthens the corresponding result for contra-continuous functions established by Dontchev [1].

THEOREM 10. Every subcontra-continuous, β -continuous function is semi-continuous.

REFERENCES

- Dontchev, J. Contra-continuous functions and strongly S-closed spaces, <u>Internat. J. Math.</u> <u>& Math. Sci. 19</u> (1996), 303-310.
- Rose, D. A. Weak continuity and almost continuity, <u>Internat. J. Math. & Math Sci. 7</u> (1984), 311-318.
- Ganster, M. and Reilly, I. L. Locally closed sets and LC-continuous functions, <u>Internat. J.</u> <u>Math. & Math. Sci. 12</u> (1989), 417-424.
- Levine, N. Semi-open sets and semi-continuity in topological spaces, <u>Amer. Math. Monthly</u> <u>70</u> (1963), 36-41.
- 5. Ptak, V. Completeness and open mapping theorem, <u>Bull. Soc. Math. France 86</u> (1958), 41-74.
- Abd El-Monsef, M. E., El-Deeb, S. N., and Mahmoud, R. A. β-open sets and β-continuous mappings, <u>Bull. Fac. Sci. Assiut Univ.</u> 12 (1983), 77-90.
- Gentry, K. R. and Hoyle, H. B. C-continuous functions, <u>Yokohama Math. J. 18</u> (1970), 71-76.
- Baker, C. W. Properties of subweakly continuous functions, <u>Yokohama Math. J. 32</u> (1984), 39-43.
- Long, P. E. and Hendrix, M. D. Properties of c-continuous functions, <u>Yokohama, Math. J.</u> <u>22</u>(1974), 117-123.
- Fuller, R. V. Relations among continuous and various noncontinuous functions, <u>Pacific J.</u> <u>Math. 25</u> (1968), 495-509.
- Mukherjee, M. N. and Basu, C. K. On S-closed and s-closed spaces, <u>Bull. Malaysian</u> <u>Math. Soc. (Second Series) 15</u> (1992),1-7.
- 12. Herrmann, R. A. RC-convergence, Proc. Amer. Math. Soc. 75 (1979), 311-317.
- Arya S. P. and Bhamini M. P. Some weaker forms of semi-continuous functions, <u>Gantita</u> <u>33</u> (1982), 124-134.