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ABSTRACT. In this paper we will show how to generate in general A2n+ and S2n+1 using a copy of
Sn and an element of order 2 in A2n+l or S2n+l for all positive integers n_>2. We will also show howto
generate A2n+l and S2n+l symmetrically using n elements each of order 2.
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1. INTRODUCTION

It is shown by Hammas 1] that A2n+ can be presented as

G=A2n+I <X, Y, TI "<X, Y>=Sn, T2= [T, Sn_I] =I >

for n=4, 6, where IT, Sn_l] means that Tcommutes with Yand withX-2yx, (the generators ofSn_l).

The relations of the symmetric group Sn < X,Y > of degree n are found in Coxeter and Moser[2]. Some

relations must be added to the presentation ofA2n+ in order to complete the coset enumeration. Also, it

has been shown by Hammas that for n 4, 6, the group A2n+ can be symmetrically generated by n

elements TO, T1, Tn_1, each oforder 2, ofthe form Ti= TXi X -z’TX i, where T and X satisfy the

relations of the group A2n+l. The set {T0, T Tn_ is called a symmetric generating set ofA2n+l
(see section 3).

In this paper, we give a generalization of the results obtained by Hammas [1] for all n>2.

Moreover a proof is given to show that the group

2
0 <X,Y, TI .<X,Y>=Sn,T =[T, Sn_I]=I>
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is either A2n+l ifn is even or $2n+1 ifn is odd for all n>2. We give permutations that generate A2n+l
and S2rt+ for all n >_ 2 which satisfy the conditions given in the presentation of the group G. Further, we

prove that G can be symmetrically generated by n permutations, each of order 2, satisfying the condition

given in remark 2.4.

Our research is motivated by the aim of showing groups in their most "natural" role acting on (or

permuting) the members of a symmetric generating set. The author has applied the method to obtain the

symmetric generating sets and the presentations of the following finite simple groups:

Tits group 2F4(2)’, Janco groups J! and J2, Mathieu groups Ml2and M24, and some ofthe linear

groups PSL(2,q). For more details, see Hammas ].

2. PRELIMINARY RESULTS

In this section, we give some ofthe preliminary results to be used in later sections. The proofs of

these results can be found in many references, see for example [2], [4], and [5].

LEMMA 2.1. Let _< a b_< n be integers where n is odd. Let G be the group generated by the n-cycle

(1, 2, ...,n) and the 3-cycle n,a, b). If the highest common factor hef( n, a, b 1, then G =An.

LEMMA 2.2. Let n be an odd integer and let G be the group generated by the n-cycle 1, 2, n and

the k-cycle 1, 2 k ). If < k < n and k is an odd integer, then G An-

PROOF. Let r =(1,2,3 ,n), and =(1,2 ,k). Since the commutator [6, z]=(1,2,k+l), then by Lemma

2.1, G_=A

LEMMA 2.3. Let G be the group generated by n-cycle (1,2 n) and the involution (n,1)(id’) for < i,

j < n. If n > 9 is an odd integer then G An.

REMARK 2.4. The main condition used in Hammas ], which we are going to use in this paper, is that

T commutes with the generators ofthe group Sn. 1"

3. SYMMETRIC GENERATING SETS

Let G be a group and let F T0, T Tn-1 be a subset of G, where T TXi -iTXX for

all 0, n--1. Let Sn be the normalizer of the set F in G, which is a copy ofthe symmetric group of

degree n. We define F to be a synunetric generating set of G ifand only ifG <F > and Sn permutes

F doubly transitively by conjugation. Equivalently, F is realizable as an inner automorphism.

4. PERMUTATIONAL GENERATING SET OF A2n+l and S2n+l
THEOREM 4.1. A2n+l (S2n+l) can be generated using a copy of Sn and an element of order 2 in

A2n+l (S2n+l) ifn is even (odd) for all n>2.

PROOF. Let X=(1, 2 n)(n+l, n+2 2n), Y=(n-1, n)(2n-1, 2n) and T (1, 2n+1)(2, n+2) (n, 2n)

be three permutations; the first is of order n, the second and the third are of order 2. Let H be the group
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generated by X and Y. By the Burnside and Moore Theorem (see Coxeter and Moser [2] ), the group H is

the symmetric group Sn Let (3 be the group generated by X, Y and T. Consider the commutator

rl =[ X,T ], which has the form rl ,n+1,2n+ ,n+2,2). Then

3 X
rl rl 1,2n+ )(2,n+3,3)(n+ ,n+2) a.

2
Therefore a (2,3,n+3). Hence

2)X
-1

Xrl (or (1,2 n,n+ 2n,2n+ 1).

2XLet 13 Xrl(o
2Let K < 13, c ,T > be a subgroup of (3. Since the highest common factor

2
hef(2,3,n+3) 1, then by Lemma 2.1 <13,et >=A2n+l. Now if n is an even integer, thenK=A2n+l"

Since X, Yand Tare even permutations then K =Q A2n+l. Also, ifn is an odd integer, then T is an odd

permutation and therefore K (3 S2n+ 1"

5. SYMMETRIC GENERATING SET OF A2n+l and S2n+l
THEOREM 5.1. Let X,Y and T be the permutations described in Theorem 4.1. Let F ={T0,T Tn_ },

X
where T T and 0,1 n-1. If n is an even integer, then the set F generates the alternating group

A2n+l symmetrically, while if n is an odd integer, then the set F generates the symmetric group S2n+
symmetrically.

PROOF. Let To=(1,2n+l)(2,n+2)... (n,2n), Tl=(1,n+l)(2,2n+l)... (n,2n), Tn_ TXn-1 =( n,2n+

(1,n+l) (n-l,2n-1). Let H <F >. We claim that if n is an even integer, then H=A2n+I and if n is

an odd integer, then H=S2n+I. To show this, suppose first that n is an even integer. Consider the

element

n-1

a=H TXi
i=0

It is not difficult to show that c =(1,2,n+2,n+3,3,4,n+4,n+5,5,6 2n,2n+ 1,n+ 1) and it is a cycle of length

2n+l. Let [3=ToT1. It is clear that fS=(1,2,n+2,2n+2,n+l). Let HI= <ct,[3>. We claim that

H1 A2n+ 1" To prove this, let 0 be the mapping which takes the element in the position of the cycle

ct into the element of the cycle (1,2 2n+l). Under this mapping, the group H will be mapped into

the group 0 (H1)= <(1,2 2n+ 1),(1,2,3,2n,2n+l)> which is, by Lemma 2.2, the alternating group

A2n+l. Hence H=H O(H1)=A2n+I.

Second, suppose that n is an odd integer. Consider the element
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n

=H TXi
i=l

It is not difficult to show that 5 =(1,2n+l,2,n+3.4,n+5.6,n+7 2n and it is a cycle of length n+l. Let

T T
t 6 TO Since 6 (2,2n+ 1,3.n+4,5,n+6 n,n+l), then

=( 1,2n+ ,n+3,3,4,n+4,n+5 n,n+ ,n+2,2)

which is a cycle of length 2n+l. Let [3 T T2 then 13 =(2,n+2,3 )(4,2n+l)(n+3,n+4). Therefore

13
2

=(2,3,n+2). Let H2 ---< ,13 2,T0 >. We claim that H2 =_S2n+l. To prove this, let0 be the mapping

which takes the element in the position of the cycle t into the element of the cycle (1,2 2n+l).

Under this mapping the group H2 will be mapped into the group

0 (H2)= <(1,2 2n+ 1),(2n+ 1,4,2n),(1,2)(3,4)...(2n-3,2n-2)(2n,2n+ 1) >.

Since the hef(2n+l,4,2n)=l, then the group <(1,2 2n+ 1),(2n+l,4,2n) > is the alternating group A2n+l.
Since n is an odd integer, then the permutation (1,2)(3,4)...(2n-3,2n-2)(2n,2n+l) is an odd permutation.

Therefore the group 0 (H2)is the symmetric group S2n+l. Hence H_= H2 _= 0 (H2)=-S2n+ 1"

The set F described above satisfies the conditions of the group G given in section 1. It is

important to note that F must have exactly n elements each of order 2 to generate A2n+ or S2n+ 1" The

following Theorem characterizes all groups obtained by removing m elements of the set F for some

integer m.

THEOREM 5.2. Let T and X be the permutations described above and let F ={ T1.T2 Tn}. Then,

removing m elements of the set F for all < m_< n-3, the resulting set generates S2(n__m)+l, removing

m=(n-2) elements of the set F, the resulting set generates the dihedral group of order 10 (D10), and

removing m=(n-1) elements of the set F. the resulting set generates the cyclic group C2.

PROOF. Using induction on n-m, if n-re=l, then F I={T1 }. Since Tl=(1,rt+l)(2,2n+l)(3,n+3)...(n, 2n),

then F generates C2. Ifn-m =2, then F 2 T1,T2}- Since T is the permutation described above,

T2=(1,n+l)(2,n+2)(3,2n+l)...(n,2n), and T1T2=(2,3,n+3,2n+1,n+2), then it is clear that F 2 generates

(r2T3...Vk_
D10. Now suppose that <m <n-3. Ifn-m k. then F k={T1 Tk}. Assuming a=T Tk,

then for k an even integer we have

ct =(2,3,n+4,5,n+6,7,n+8 k- ,n+k,k+ ,n+k+ 1,2n+ ,k,n+k- ,k-2,n+k-3 4.n+3,n+2)

which is a permutation of length 2k+ 1" while if k is an odd integer, then

a =(2,n+2,3,n+3,4,n+5,6,n+7,8,n+9 k- ,n+k,k+ ,n+k+ 1,2n+ ,k,n+k- ,k-2,n+k-3 5, n+4,3),
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it is also a permutation oflength 2k+l. Let 3= T T1T2T3 Since 13=(2, n+3)(3, n+2)( 4, n+4, 2n+l),

then 13 3=(2,n+3)(3,n+2). By Lemma 2.3, cand 13 3 generate A2k+l. Hence the group generated by c,

13 3 and T is the Symmetric group S2k+ 1- Therefore the Theorem is true for all m.

REMARK. The above results are summarized in the following table

n G=<X, Y,T> <X, T> < F>

even A2n+l A2n+l A2n+l
2 odd S2n+l S2n+l S2n+l

where

A2n+l <X,Y,TI <X,Y> Sn, T
2

[T,Y] =[T,X-2yx] (XT)
2n+l (YTn_2)10>.

S2n+ <X,Y,T <X,Y > Sn, T
2
=[T,Y =[T, x’ZYx] (XT)n(n+a) (Y Tn_2) 10>.

From the above, we can see that the order of the element XT is n(n+ 1) when n is an odd integer.

As n gets larger, the order ofXTbecomes very large. For this reason, Hammas [1] had been unable to

proceed for large odd values of n.
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