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ABSTRACT. a-scattered spaces, spaces whose a-topology is scattered, are introduced and used

to slightly extend a recent result of A. V. Arhangel’skii and P. J. Collins [1]. Strong irresolvability of

J. Foran and P. Liebnitz [6], is also characterized in terms ofthe a-topology, and it is shown that a recent

theorem of Julian Dontchev [5] in essence maximally extends the Arhangerskii-Collins result
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1. INTRODUCTION AND DEFINITIONS
For any space X (X, T), the a-space of X is X (X, .4) where {U- NIU E " and

Int CI(N) 0} is the a-topology for X, [9][ 11 ]. Certainly, - C "raand unless specifically notated, the

interior and closure operators Int and Cl are with respect to the base topology -. Int and Cl denote

the interior and closure operators respectively relative to "ra. A space X is an a-space if and only if

X X4. The a-topology for X is obviously a base for a topology since it is closed under finite inter-

section, and is really a topology on X, being also closed under arbitrary union ofmembers This last fact

can be verified as follows. For each indexed subfamily {UIA6A} C_ ,[.J(U-N)= ([.JU)-N
where N (I,.J.xU,) [.,J,x(U,x N,x). It is enough to show that N is nowhere dense in X. Evidently,

{UIA A} is an open cover for N such that for each A, U N N is nowhere dense since

U f’l N c_ U (U N) _C N. So, N is locally nowhere dense The following proposition finishes

the argument.

PROPOSITION 1. Each locally nowhere dense set s nowhere dense.

PROOF. Even though this result is well known, a simple argument is supplied as we use this result

again later. Recall that a set N is nowhere dense if and only if for each nonempty open set U there exists

a nonempty open subset V C_ U such that V N N 0. Suppose that N has an open cover {U A A}
such that for each A, U N N is nowhere dense, and let U be a nonempty open set If U f N 0, set

V U. Otherwise, U U 0 for some A e A. In this case, set V (U rq U) CI(U q N) In
either case, 0 7t V C_ U, and V rq N 0. I-I

Let us say that a function f (X, -) ---, (Y, a) is r-continuous if - is a r-base for the weak topology
f-(a) {f-(V)IV e a}, i.e., for each open V, Int f-(V) 7t 0 whenever f-(V) 7t 0. It is evident

that for any space X, the identity function f" X X is open and r-continuous, so that X and X
share the same dense sets It follows that X and X also share the same nowhere dense sets, so that X
is an a-space, i.e., (X4)4 X4.
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Note that a space X is an a-space if and only if its nowhere dense sets are closed Recall that a

space is submaximal if and only if its dense subsets are open, which is equivalent to having codense sets

closed This immediately yields the following since nowhere dense sets are codense

PROPOSITION 2. Every submaximal space ts an a-space El
Recall that a space X is scattered if every nonempty subspace has an isolated point. Let I(X)

denote the set of isolated points of X. Clearly, ifX is scattered then I(X) is the minimum dense subset

ofX, so that dense subsets ofX have dense interiors

PROPOSITION 3. For each space X, thefollowing are equzvalent:
(a) Dense subsets ofX have dense interiors,

(b) Codense subsets ofX are nowhere dense,

(c) X is submaximal.

PROOF. It is easy to see that (a) holds if and only if (b) holds. Now, if (b) holds and D is a dense

subset ofX, since X and X share dense, codense, and nowhere dense sets, X- D is a closed subset

ofX so that D 6 r and (c) holds. Conversely, ifX is submaximal and D C_ X is dense, then D E "r

so that D U N for some U E r and nowhere dense N Now, U Cl(N) C_ Int(D) implies

X Cl(D) CI(U) c_ Cl Int(D) so that dense subsets ofX have dense interiors El

An immediate consequence is that for each space X, ifX is scattered then X is submaximal, and at

once we have the following result of A. V. Arhangel’skii and P. J. Collins ].
COROLLARY 1. fix is scattered, then X X ifand only ifX is submaximal.

PROBLEM. Find the largest class of spaces for X supporting the conclusion of Corollary

It is clear that we are looking for the largest class (if it exists) of spaces for X so that X X

implies X is submaximal. Enlarging the class of scattered spaces to contain the non-a-spaces only

trivially extends the Arhangel’skii-Collins result. Perhaps a nontrivial strengthening of Corollary results

by assuming only that X is scattered. Certainly, the conclusion would be supported.

2. a-SCATTERED SPACES
DEFINITION 1. A space X is an a-scattered space ifX is scatterec
Some characterizations ofa-scattered spaces are stated in the following theorem.

THEOREM 1. For a space X, thefollowing are equivalent:

(a) X is scattered,

(b) Every somewhere dense subspace ofX has an isolated point.

(c) I(X) is dense in X.
PROOF. Since X and X share the same somewhere dense subsets and since r C_ , (b) implies

that each somewhere dense subspace of X has an isolated point. Consequently, (a) follows from (b)
since the nowhere dense subspaces ofX are discrete. To see that (a) implies Co), let A be a nonempty

subspace of X having no isolated point. We will show that A is nowhere dense. Assuming that X is

scattered, I(A) # 0 where I(A) denotes the set of isolated points in the subspace (A, TIA) For each

p I(A), there exists U N T (with the understanding that U r and Int Cl(N) )) such that

(U- N)A {p}. Since I(A) , p 6 CI(N). Thus, U I(A) c_ U q A C N t3 {p} C_ Cl(N),

a nowhere dense set, implies U f31 (A) is a nowhere dense subset of X. This shows that I (A) is a

locally nowhere dense subset ofX and hence by Proposition 1, I (A) is nowhere dense. It follows that

A I(A) (X- I(A)) t A 6 "r[A. Thus, I(A I(A)) 0 implies A I(A), so that A is

nowhere dense.

Clearly, Co) implies (c) since nonempty open sets are somewhere dense and for each open subspace

U of X, I(U) C_ I(X). To show that (c) implies (b), let A c_ X be somewhere dense and choose

p I(X)InCl(A). Then {p} r and p Cl(A) implies p 6 A. Finally, this implies that

, (A).
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Since the a-scattered spaces are precisely those having a dense set of isolated points, examples of

such spaces can easily be found which are not scattered. One such example is offered.

EXAMPLE 1. Let (X, ) be the set of real numbers wth the smallest expanszon of the usual

topologyfor which rational points are open. Then I(X) Q is dense so that X is a-scatterec But,
the set P X Q ofirrationals zs dense-zn-itselfso that I(P) @ andX ts not scattered.

The following theorem decomposes scatteredness into two strictly weaker components

THEOREM 2. ,4 space X is scattered ifand only ifX is a-scattered and every nonempty nowhere

dense subspace ofX has an isolatedpomt. [2

REMARK. Julian Dontchev has suggested that Theorem 2 might be rephrased more naturally as

follows. A space X is scattered if and only if X is a-scattered and N-scattered where a space is N-
scattered if every nowhere dense subset is scattered.

in-itself and yet nowhere dense subspaces ofX are discrete.

We now offer the following slight improvement ofthe Arhangerskii-Collins result.

THEOREM 3. IfX is a-scattered, then X is submaximal tfand only ifX ts an a-space. [2

3. STRONGLY IRRESOLVABLE SPACES
Let us call a space crowded if it is dense-in-itself. Edwin Hewitt in [8] showed the existence of

crowded submaximal spaces of arbitrary infinite cardinality. Such a space X is of course an a-space but

is far from being a-scattered since I(X) @. Can the Arhangel’skii-Collins result be extended to a class

of spaces not requiring the existence ofisolated points? Yes Julian Dontchev lifted the A-C result to the

class of strongly irresolvable spaces in [5] Recall that a space is strongly irresolvable [6] if each

nonempty open subset is irresolvable. A space is irresolvable, i.e., not resolvable, if it cannot be

expressed as the union oftwo disjoint dense (or codense) subsets. We state the Dontchev result formally
and then show that in essence, it gives the best possible extension of the class of spaces supporting the

A-C result.

THEOREM 4. (Dontchev [5]) IfX s strongly irresolvable, then X is submaximal ifand only tf
X is an a-space.

Actually, Theorem 4 is a corollary ofthe following observation.

TliEOREM 5. A space X is strongly irresolvable ifand only ifX is submaximal.

PROOF. By Proposition 3, X is submaximal if and only if every codense subset ofX is nowhere

dense. Such a space X must be strongly irresolvable. Otherwise, there is a nonempty open set U which

is a union of two disjoint nonempty codense subsets. But since codense subsets of an open set are

codense in X, and hence nowhere dense, this forces the contradiction that U is nowhere dense.

Conversely, if a nonempty space X is strongly irresolvable and if D C_ X is a dense subset,

Int(D) since X is irresolvable. Further, Int(D) is dense for otherwise, D Cl Int(D) would be a

dense and codense set in the open subspace X- Cl Int(D). Certainly, if U c_ X- Cl Int(D) is

open, U E % the topology on X, implies U n D , and also U D # @ since U N Int(D) . [2

A decomposition of submaximality now follows.

COROLLARY 2. A space X is submaximal if and only if X is strongly irresolvable and

X=X. [2

It is easy to produce irresolvable spaces which are not strongly irresolvable, showing that strong

irresolvability is strictly stronger than irresolvability. For example, if Y is any noncmpty irresolvable

space and Z is any nonempty resolvable space, the free join X Y LI Z cannot be strongly irresolvable.

But, X is irresolvable since a dense and codense subset D ofX makes D Y to be a dense and codense

subset of Y. On the other hand, strong irresolvability is not as strong as hereditary irresolvability. To see

this, consider the space (X, -) ofExample 1. It is clearly irresolvable since it is a-scattered but it fails to
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be hereditarily irresolvable since the subspace P of irrationals is resolvable. The countable set of

irrational algebraic numbers and its complement the set oftranscendental numbers form a resolution ofP
as a disjoint union of two dense subsets. Evidently, strong irresoivability lies strictly between the

properties of irresolvability and hereditary irresolvability Of course, strong irresolvability is strictly

weaker than submaximality since submaximality implies hereditary irresolvability. To see that strong

irresolvability is also strictly weaker than the cz-scattered condition, consider the crowded infinite

submaximal spaces of Hewitt. Having no isolated points, they cannot be a-scattered, and yet being

submaximal a-spaces, they are strongly irresolvable.

We now want to note some similarities in behavior for submaximality, hereditary irresolvability, and

scatteredness in contrast to corresponding behaviors for a-scatteredness and strong irresolvability
Recall that a property is semitopological [3], if it is preserved by semihomeomorphisms, bijections which

are both irresolute and have an irresolute inverse, i.e., bijections for which images and inverse images of

semiopen sets are semiopen. A set A is semiopen if and only if A C_ Ul Int(A) It was later shown

implicitly in [2] and later independently and explicitly in [7] that semitopological properties are precisely

the a-topological properties. The same result had essentially been stated by O. Njstad [12] as a

consequence of the fact observed in a former paper [11], that in any topological space, the class of

semiopen sets determined the a-topology and vice-versa. Recall that a property P is a-topological if

both X and X have P when either has P (see also [14]). Example above shows that scatteredness,

submaximality, and hereditary irresolvability are not semitopological properties. It was noted in 13] that

crowdedness is semitopological. Moreover, having isolated points is semitopological since one can show

that for any space X, I(X)= I(X). In fact, since X and X share the same dense sets, a-

scatteredness is semitopological. Also, strong irresolvability is semitopological for a space X is strongly
irresolvable if and only if X (X) is submaximal which occurs if and only if X is strongly
irresolvable. As a side remark, it was noted in [7] that resolvability is semitopological. Thus,

irresolvability is also semitopological.
For a further comparison-contrast, unlike scatteredness, submaximality, and hereditary

irresolvability, evidently, a-scatteredness, strong irresolvability, and irresolvability are not hereditary

properties. Hereditary a-scatteredness is scatteredness and hereditary strong irresolvability is hereditary

irresolvability which is strictly weaker than submaximality. Perhaps, the property strong irresolvability

could be renamed a-submaximality in light of Theorem 5. However, note that in this sense, a-

submaximality, a-hereditary irresolvability, and a-strong irresolvability are pair,vise equivalent.

It might also be observed that unlike scatteredness, submaximality, hereditary irresolvability, and

irresolvability, the a-scatteredness and strong irresolvability properties are not generally preserved by

open surjections.
EXAMPLE 2. Let (Y, ) be any infinite a-scattered space and let Z be any countably infimte set

disjoint from Y endowed with the cofinite topology. Let X Y U Z be the space wth topology

" cr U {U C_ X X U is afinite subset ofZ} and let Y Z be the freejoin ofY and Z. Then the

identity function f" X - Y U Z is an open surjection from the a-scattered and hence strongly

irresolvable space X onto a space having a nonempty resolvable open subspace Z. Hence, Y Z is

neither strongly irresolvable nor a-scattered

REMARK. The space X of Example 2 has To separation but fails to be a T space since points of

Y are not closed. In fact, the space X of the example may be replaced by a TI regular space without

disturbing the validity of the example. Let Y Q be the set of rational real numbers and let T be the set

of rational numbers having terminating decimal expansions. Then with respect to the usual subspace

(order) topology v on Q, T is both dense and codense so that (Q, v) is resolvable. Let Z Y x { 1
have the usual product topology. Let X Y LI Z have a topology - defined via an open base. Let r/be
a fixed positive irrational real number. If z (V, 1) Z, for each positive rational number r, let
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B,(z) ([(y r, y + r) n Q] 1}) u [(y + r] r, y + + r) Q] be a basic open neighborhood of z

For each y Y T, md each positive ration number r, let B(y) (y r, y + r) Q be a basic open

neighborhood ofy. Finely, ify T, let {y} E Since y + B is iffation for ch y Q, it follows that

(X, w) is T md rel. so, X is a-scaered since Y is open d a-scaered subspace md 2 is

nowhere dense. The identi map f X Y U Z is m on bijection yet the T md rl &ee join

Y U Z is not rongly iesolvable since the open subspace Z is homeomohic to (Q, v)
However, the properties a-scaeredness d strong iesoivabili e preseed by open

-cominuous suoections. In pmicul, if a product space is either scaRered, herditmly solvable,

submm, a-scarerS, or strony iesolvabl, then so is each favor On the other hd, xple
is ven [10] of a subm space X whose sque is not submm so that generly,

submm is not produive. , (a-)scaeredness is not itely productive since a coumly

it power of a two poim discrete space is homeomoc to e usu crowded d compa Cmtor

s. Ts so shows that song ielvabili is not itely produive sce E H [8], showed

that locly compa crowded Hausdo spaces e revivable. However, eve fite pru of a-

scaRer spaces is a-scatter. For if X md Y e spaces th dense sets of isolat poims I(X) d
I(Y) resptively, then I(X x Y)= I(X)x I(Y) is dense in X x Y. Is scattereess fitely

productive? Is grong iesolvabili fitely productive? Both of these questions e mswered

afively in a sequel to ts paper [4].
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