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ABSTRACT. The aim of this paper is to construct the basic concepts related to connectedness in

intuitionistic fuzzy special topological spaces. Here we introduce the concepts of C5-connectedness,

connectedness, Cs-connectedness, CM-connectedness, strong connectedness, super connectedness, Ci-
connectedness (i=1,2,3,4), and, obtain several preservation properties and some characterizations

concerning connectedness in these spaces.
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1. INTRODUCTION

ARer the imroduction of the concept of fuzzy sets by Zadeh [1] several researches were

conducted on the generalizations of the notion of fuzzy set. The idea of intuitionistic fuzzy set was

first published by Krassimir Atanassov [2] and many works by the same author appeared in the

literature (see Atanassov [2,3]) Later this concept is used to define intuitionistic fuzzy special sets by
Coker [4] and intuitionistic fuzzy topological spaces are introduced by oker [5], Coker-Es [6].In this

direction some preliminary concepts are also defined by Colkun-oker[7].Here we shall give the

classical version ofthis kind of fuzzy topological space in the framework of cormectedness;
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especially, we shall make use of several types of fuzzy connectedness in intuitionistic fuzzy topological

spaces in Turanli-Coker [8].

2. PRELIMINARIES

First we shall present the fundamental definitions. The following one is obviously inspired by K.

Atanassov [2,3]

DEFINITION 2.1. (see Coker [4] Let X be a nonempty fixed set. An intuitionistic fuzzy

special set (IFSS for short) A is an object having the form A < x, A1, A2 >, where A and A2 are

subsets of X satisfying A1 c A2 =o The set AI is called the set of members of A, while A2 is

called the set of"nonmembers of" A.

Obviously every set A on a nonempty set X is obviously an IFSS having the form <x,A, A% One

can define several relations and operations between IFSS’s as follows

DEFINITION 2.2. (see Coker [4,5]) Let X be a nonempty set, and the IFSS’s A and B be in

the form A=<x, A A2 >, B=<x, B1 B2 >, respectively. Furthermore, let Ai ieJ} be an

C2)>arbitrary family ofIFSS’s in X, where A =<x, AI1),A, Then

(a) A___B iffA_c_B and A2_B2

(c) X=<x, A2, A >

(e) <>A=<x, A2, A2 >,

(g) (’Ai <x, f"IAI’),kjAI2)>

(b) A=B iff A_B and B_A-

(d) []A =<x, A, A>,

(f) Ai=<x,

(h) = <x, ,X > and X =<x,X, >.

We shall define the image and preimage ofIFSS’s. Let X and Y be two nonempty sets and f X Y a

function.

DEFINITION 2.3. (see (oker [4,5]) (a) IfB=<y,B ,B2 > is an IFSS in Y, then the preimage orb

under f, denoted by f- (B), is the IFSS in X defined by ft(B) <x, f (B), ft (B2)>

(b) If A=<x,A ,A2 > is an IS in X, then the image of A under f, denoted by f(A), is the IFSS in Y

defined by f(A)= <y, ffA ), f_(A2 )>, where f_(A2)=(f(A))

COROLLARY 2.1. Let A, A. (ieJ) be IFSS’s in X, B, Bj (jK) IFSS’s in Y and f: X -> Y a

function. Then

(a) A, _A2 :::> f(A1 )_f(A2 Co) B c_B2 => f’ (B)_f’ (B2)

(c) Ac_f" (f(A)) and iff is injective, then A--f" (f(A)).

(d) f(f’ (B))__B, and iff is surjective, then f(f’ (B))=B

(e) f (wBj)= f’ (Bj)

(g) f(wAi )=w’(A,

(i) f" (Y)=X

(k) f( X )=Y iffis surjective.

(f) f-I (’Bj)= f" (Bj)

(h) f(cA.)cL=_f(A, ), and if f is injective, then f(A, )=cf(A. ).

0) f" ()=

(l) f(ee

(m) Iff is surjective, then f(A)_f(X); and if, furthermore, fis injective, we have (f(A)) f(X)

(n) f()=f- (B)
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DEFINITION 2.4 (see Coker [5,9], Coker-Es [6]) An intuitionistic fuzzy special topology (IFST

for short) on a nonempty set X is a family z of IFSS’s in X containing @, X, and closed under

finite infima and arbitrary suprema. In this case the pair (X,z) is called an intuitionistic fuzzy special

topological space (IFSTS for short) and any IFSS in z is known as an intuitionistic fuzzy special open

set (IFSOS for short) in X.

Any topological space can be obviously treated as an IFSTS in a usual manner.

PROPOSmON 2.1. Let (X,z) be an IFSTS on X. Then, we can also construct several IFSTS’s

on X in the following way.

(a) 0, ={[]G:G,}, (b) x 0.2 ={<>G:Gx}.

REMARK 2.1 Let (X, z) be an IFSTS x ={ G G=<x,G ,G> is a topological space on X

x G: G=<x,GI ,G2 >1; is the family of all closed sets of the topological space (2 G
G=<x,G ,G2> on X.

The complement X of an IFSOS A in an IFSTS (X, z) is called an intuitionistic fuzzy special

c,losed set (IFSCS for short) in X, and the interior and closure fan IFSS A are defined by

cl(A)={K K is an IFSCS in X and A_cK},

int(Aw{G G is an IFSOS in X and C,_A}

DEFINITION 2.5. Let (X, ) be an IFSTS on X. If A=int(cl(A)), then A is called an

intuitionistic fuzzy special regular open set in X

DEFINmON 2.6. Let (X, ) and (Y, W) be two IFSTS’s and let f:X-Y be a function. Then

f is said to be continuous iffthe preimage ofeach IFSS in W is an IFSS in

Here we obtain some characterizations of continuity.

PROPOSITION 2.2 The following are equivalent to each other:

(a) f. (X, z) -+ (Y, W) is continuous.

(b) The preimage ofeach IFSCS in Y is an IFSCS in X

(c) f (int(B))_ int(f" (B)) for each IFSS B in Y.

(d) cl(f" (B))c_ f’ (cl(B)) for each IFSS B in Y

3. TYPES OF CONNECTEDNESS IN INTUITIONISTIC FUZZY SPECIAL

TOPOLOGICAL SPACES

Throughout this section (X, ) and (Y, W) will always denote IFSTS’s We shall define several

types of connectedness in IFSTS’s

DEFINITION 3.1. (see Chaudhuri-Das [I0], Turanli-Coker [8])

(a)X is called C-disconnected, if there exists an IFSS A which is both inmitionistic fuzzy

special open and inmitionistic fuzzy special closed, such that .A.X

Co) X is called C -connected, ifX is not C -disconnected.

(c)X is called disconnected, ifthere exist IFSOS’s A. and B3 such that AB X and

AraB=
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(d) X is called connected, ifX is not disconnected.

PROPOSITION 3.1. C-connectedness implies connectedness.

PROOF. Suppose that there exist nonempty IFSOS’s A and B such that A B=X, AB=9, from

which we get A,B1 =X, A2B2=, ABm=, A2Be=X, in other words, A=. Hence A is

intuitionistic fuzzy special clopen, i.e. (X,) is C -disconnected.

COUNTEREXAMPLE 3.1. Consider the I:FTS z on X={a,b,c,d}, where ={ O, X,A,A,A3,A},

A =<x,{a},{b,c}>,A2=<x,{b,c},{a}>, A3 =<x, @,{a,b,c}>, A4 =<x,{a,b,c},O> (X,x) is connected,

but not C -connected (namely, A is intuitionistic fuzzy special clopen in X).

PROPOSITION 3.2. Let f: (X,z) --> (Y, W) be a continuous surjection. If X is connected, then

so is Y.

PROOF. Assume that Y is disconnected Thus there exist IFSOS’s C;e, D- in Y such that

CD=-Y, Cr’)-.--O. Now we see that A---f " (C), B=f(D) are IFSOS’s in X, since f is continuous

From C;e O, we get A--f " (C);eO (If f (C) O, then C---f[71 (C)--’-f( O O, which is a

contradiction.) Similarly, we obtain B:O. Now CD=Y=:f(C)f(D f(y)=X => AB=X,

CD= ::> fl(c) c’ f’l(’D)= fl()= : Ac_xB=" But this is a contradiction to our hypothesis,

thus Y is connected.

PROPOSmON 3.3. If(X,x) is disconnected, then so are the IFSTS’s (X,z0,) and (X,z0.2

PROOF. Let there exist IFSOS’s AO and BO such that AraB= X, AB=O. In this case we

obtain X X (AB)=( A)( B) :::, A)w( B) X

=[] =[](Ac)=( []A)([]B)=:> ([]A)([]B)=,

which is a contradiction.

PROPOSITION 3.4. (X,’0 is C-connected iff there exist no nonempty IFSOS’s A and B in X such

that A=.

PROOF. (= :) Suppose that A and B are IFSOS’s in X such that A;e@;eB and A=B Since A=,

B is an IFSCS, and A;eO =:, B;e X. But this is a contradiction to the fact that X is C5 -connected

:) Let A be both an IFSOS and IFSCS such that O;eA;e X. Now take B=X. In this case B is an

IFSOS and A;e X => B=X;e O, which is a contradiction.

PROPOSITION 3.5. (X,x) is C -connected iff there exist no nonempty IFSS’s A and B in X
such that B=X, B=eI(A), A=el-’i

PROOF. (::>:) Assume that there exist IFSS’s A and B such that A;e;eB, B=X, B=cI(A),

A=cI(B). Since el(A) and el(B) are IFSOS’s in X, A and B are IFSOS’s in X, which is a contradiction
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:) Let A be both an IFSOS and IFSCS in X such that ;A*X. Taking B=X we obtain a

contradiction.

Here we generalize the concepts of Cs-connectedness and Ct-connectedness given by

Chaudhuri- Das [10] to the intuitionistic case:

LEMMA 3.1. (a) AB= ==> A_c, (b)A AB;e

DEFINITION 3.2. Let A and B be nonzero IFSS’s in (X,z). A and B are said to be weakly

separated, if cl(A)<:_ and cl(B)c_X and q-separated, if el(A) c B @ =A c cl(B).

DEFINITION 3.3. (see Turanli-(oker [8]) (a) An IFSTS (X,z) is said to be Cs-disconnected, if

there exist weakly separated nonzero IFSS’s A and B in (X,z) such that X =AwB

(b) (X,x) is called Cs-connected, if (X,z) is not Cs-disconnected.

(c) X is said to be CM-disconnected, if there exist q-separated nonzero IFSS’s A and B in X such

that X =AB.

(d) X is called CM-connected, ifX is not CM-disconnected.

Let us give the connection between these two types of connectedness in IFSTS’s:

COROLLARY 3.1. Ifthe IFSTS X is Cs -connected, then X is also CM -connected.

DEFINITION 3.4. (see Turanli-(oker [8]) An IFSTS (X,z) is said to be strongly connected, if

there exit no nonempty IFSCS’s A and B in X such that Ar=.
PROPOSITION 3.6. X is strongly connected iff there exist no IFSOS’s A and B in X such that

A;* X ;B and AB X.

PROOF. (==>:) Let A and B be IFSOS’s in X such that A; X ;B and AB=X. Ifwe take C=X and

D=, then C and D become IFSCS’s in X and C*,D, Ccq)=, a contradiction.

. Use a similar technique as above

PROPOSITION 3.7. Let f (X,x) --> (Y, ) be a cominuous surjection. If X is strongly

connected, then so is Y

PROOF. Suppose that Y is not strongly connected. In this case there exist IFSCS’s C and D in Y
such that C,*D, Cc-d)=. Since f is continuous, fl(C) and fl(D) are IFSCS’s in X, and

f(C)f(D)=, f(C);e@, f(D) @. (If f (C)=, then f(f (C))=C f()=C ==> =C, a

contradiction.) But this is a contradiction, hence Y is strongly connected, too.

Strong connectedness does not imply C5 -connectedness, and the same is tree for IFSTS converse,

i.e. C5 connectedness does not imply strong connectedness. For this purpose see the following

counterexamples:

COUNTEREXAMPLES 3.2. Let X={a,b,c,d} (a) If z={,X,A,A,A,A}, where

A =<x,{b,c},{d}>, A =<x,{d},{b,c}>, A=<x,,{b,c,d}>, A =<x,{b,c,d},>, then the IFSTS

(X,z) is strongly connected, but not C-connected.
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(b) If z={ , X,A,Aa,A,A4,A}, where A =<x,{b,c},{d}>, A=<x,{a},{c}>, A =<x,{a,d},{c}>,

A4=<x,{a,b,c},>, A=<x,,{c,d}>, then the IFSTS (X,z) is C-connected, but not strongly

connected

DEFINITION 3.5. (see Turanli-Goker [$]) (a) If there exists an intuitionistic fuzzy special regular

open set A in X such that *A*X, then X is called super disconnected

(b) X is called super connected, ifX is not super disconnected.

Now we give some characterizations of super connectedness:

PROPOSITION 3.$. The following assertions are equivalent:

(a) X is super connected. (b) For each IFSOS A* in X we have cl(A) X

(c) For each IFSCS A;X in X we have int(A)=

(d) There exist no IFSOS’s A and B in such that A B, A
_ .

(e) There exist no IFSOS’s A and B in X such that A*B, B=cl(A), A=cI(B)

(f) There exist no IFSCS’s A and B in X such that A* B, B=mt(A), A=tnt(B)

PROOF. (a)=>(b) Assume that there exists an IFSOS At such that cl(A), X. Now take

B=int(cl(A)). Then B is a proper intuitionistic fuzzy special regular open set in X, and this is in

contradiction with the super connectedness of X.

(b) =>(c) Let AX be an IFSCS in X. Ifwe take B=X, then B is an IFSOS in X and B;c

Hence cl(B)= X cl(B)=O int(g)= int(A)= follows.

(c) => (d) Let A and B be IFSOS’s in X such that A;eB and A_. Since is an IFCS in X

and B* =::> *X, we obtain int(g)= But, from A_g, we see that A=int(A)
_

int()=O,

which is a comradiction.

(d) (a) Let eA.X be an intuitionistic fuzzy special regular open set in X. If we take

B=cI(A----, we get B. (Because, otherwise we have B= cI(A)=I ::> cl(A)=X :=>

A--int(cl(A))-nt(X )=X, but the last result contradicts the fact A*X .) We also have A
_

B, and this

is a comradiction, too.

(a) => (e) Let A and B be IFSOS’s in X such that A;,B and B=cI(A), A=cI(B) Now we have

int(cl(A))nt(g)=cl(B)=A and A;eO, A*X. (If not, i.e. if A=X, then X=cl(Bj O=cl(B)

B .) But this is a contradiction.

(e) (a) Let A be an IFSOS in X such that A---int(cl(A)), ,A,X. Now take B=cI(A--. In this

case we get B, and B is an IFSOS in X and B=cI(A) and cl(B)=cl(cl(A)) =int(cl(A)) --int(cl(A))=A,

which is a contradiction.
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(e) = (f) Let A and B IFSCS’s in X such that AX eB, B=int(A), A=int(B) Taking C=A and

D=B, C and D become IFSOS’s in X and C;D, cl(C)=cl(A)--int(A)=int(A)=B=D, and

similarly cI(D)=C. But this is an obvious contradiction.

(f) (e) One can use a similar technique as in (e) (f).

PROPOSITION 3.9. Super connectedness implies C-connectedness.
PROOF. Obvious.

But the reverse implication to Proposition 3.9 does not hold in general

COUNTEREXAMPLE 3.3. Let X={a,b,c,d} and the IFST ’={ ,X,AI ,A2 ,A3 ,A4 on X,

where A =<x,{a},{c,d}>, A2=<x,{d},{a,c}>, A3 =<x,{a,d},{c}>, A =<x,@,{a,c,d}>. Then the IFSTS

(X,z) is C -connected, but not super connected

PROPOSITION 3.10. Let f:(X,) --> (Y, W) be a continuous surjection. If X is super connected,

then so is Y.

PROOF. Suppose that Y is super disconnected. In this case there exist IFSOS’s C and D in Y such

that C;;D, C_c Since f is continuous, f(C) and f(D) are IFSOS’s in X, and

C c_ =>f(C)c_f()=f-I (D), f(C); fq(), which means that X is super disconnected

Now we shall summarize the interrelations between several types of connectedness in IFSTS’s.

super connectedness Cs -connectedness

C -connectedness CM -connectedness

connectedness

Here we generalize the idea of fuzzy Ci-connectedness in fuzzy topological spaces and in

intuitionistic fuzzy topological spaces (see Ajmal-Kohli [11], Chaudhuri-Das 10] and Turanli-oker
[$] to the intuitionistic case:

DEFINITION 3.6. Let N be an IFSS in (X,x)

(a) Ifthere exist IFSOS’s M and W in X satisfying the following properties, then N is called C,-

disconnected (i=1,2,3,4)

C:N _c.MW,MrW c_N,Nr’tMc:,NW=, C2:N _cMW,NMW=@,NM;,NW;,
C3:N _cMwW,MWc_N,MN,WN, C4:N _cMwW,NrxMcW=,MN,W.

(b) N is said to be C,-connected (i=1,2,3,4), ifN is not C,-disconnected (i=1,2,3,4)

Obviously, one can obtain the following implications between several types of C, -connectedness

(i=1,2,3,4)

C -connectedness --> C2 -connectedness

C3-connectedness --> C4 -connectedness

None ofthese implications are reversible, as the following counterexamples state
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COUNTEREXAMPLES 3.4. Consider the IFST z on X={a,b},where

z={ , X,A,A2,A3,A4,As,A6,A7}, A =<x,{a},}>, A2 =<x,{b},>, A3 =<x,,{a}>, A4 =<x,,{b}>,

A =<x,{a},{b}>, A, =<x,{b},{a}>, A7 =<x,,> and take the IFSS N=<x,,{a}> in X.

(a) N is C_-connected, but not C-connected. [Namely, A2 and A3 do satisfy the properties in (C)

(b) N is C3 -connected, but not C-connected
COUNTEREXAMPLE 3.5. Consider the IFST on X={a,b,c,d}, where z={ , X,A,A2,A3,A4},

A =<x,{a},{b,c}>, A:=<x,{b,c},{a}>, Aa =<x,,{a,b,c}>, A =<x,{a,b,c},> The IFSS

N=<x,{a},{b}> in X is C4-connectcd, but not C-connccted [Namely, A and A2 do satisfy the

properties in (C).]

COUNTEREXAMFLE 3.6. Consider the IFST z on X={a,b,c}, where

={ ,X,AI,A2,A},A=<x,,{a}>,A==<x,{a},{b,c}>,A3=<x,{a},>. The IFSS N=<x,{a},3> in X

is C4-connected, but not C2-connected. [Namely, A and A= do satisfy the properties in (C2).
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