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1. INTRODUCTION
Let E be a Banach space, r, T E R+ and I [a, b] Let us denote

Cz([- r, T]) the vector space of all continuous functions from [- r, T] to E endowed with the

uniform topology
For all >_ O, st CE([ r, t]) Ce([ r, 0]),

(stf)(O) f(t + 0), V0 E [- r, 0].

A" I x E 2E such that A(t, .)is an m-accretive multivalued operator

Pwc(E) the family ofnonempty weakly compact subsets ofE
In this paper we are concerned with the following problems

(1) Existence of solutions ofthe perturbated evolution equation with delay

’(t) -A(t,u(t))+F(t, stu) ae onI,
(/9) u----ap on [- r, 0]

where F" I x CE([- r, 0]) Pwc(E) is a multivalued function such that F(t, .) is lower

semicontinuous and b C([- r, 0]) is arbitrary but fixed.

(2) Existence of solutions ofthe perturbated evolution equation with delay

u’(t) Nr(t)(u(t)) + F(t, stu) a e onf,
(Q) u--p on [- r, 0]

where Nr(tl(z) is the normal cone of the convex set l"(t) at the point z E E; E I It should

be noticed that the problem (Q) is not a special case ofthe problem (P)
(3) Existence of integral solutions of (P), when the operator A is independent of t, under

conditions that are weaker than those imposed in (P)
The results obtained in the present paper generalized the following interesting known cases

Problem (P) for which the dual of E is uniformly convex, A(t, .) is an m-accretive single-valued

operator and F is a Lipschitz single-valued function cf Kartsatos and Parrott
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Problem (P) for which E is reflexive, A(t,.) is an m-accretive multivalued operator and F is a

Lipschitz single-valued function cf Tanaka [2]
Problems (P) and (Q) without delay cf Cichon [3], [4], Ibrahim [5] and the references therein

2. NOTATIONS AND DEFINITIONS
Let E* be the dual of E, Eo the Banach space E endowed with the weak topology a(E, E’) If B

is a multivalued operator from E to 2E then B is said to be accretive if for each A > O, zl,z2 E D(B)
(the domain of B), Yx E B(:r,x) and Y2 B(z2) we have

We say that B is m-accretive ifB is accretive and ifthere exists A > 0 such that R(I + AB) E, where

I is the identity map It is known that if B is m-accretive, then for every ,k > 0 the resolvant

JaB (I + AB)-1 and the Yosida approximation of B; B, (I- JaB)/,k, are defined everywhere

The generalized domain ofB is defined by

D’(B) {zEE’[B(x)[ =li_,rn[[Bx[, < oo}.
For the properties of m-accretive multivalued operators refer to [6] and [7]

IfC is a convex subset ofE and x E C, then the normal cone ofC at x is defined by

Nc(x) {y E" (y,z- x> <_ O, Vz C}.

Now we recall some concepts concerning multivalued functions Let Y be a locally convex space and

let G E 2v {} We say that G is lower semicontinuous (resp. upper semicontinuous) if for every

openVinYtheset{xE’G(x)V}(resp {xE’G(x) cV})isopeninE. We say that

G is lower semicontinuous (resp. upper semicontinuous) in the Kuratowski sense iff for all v, v in E,
G(v) C_ lim,_,infG(v,) (resp lim,,_,osupG(v,) C_ G(v)), where

G(v,,) z Y" z lim z., z.
_

G(v,.,), V n >_ 1,lim inf

supG(v,,) flz e Y" z lim z,,z,., G(v,,),Vk >_ 1.lira

If E is metrizable then lower semicontinuity and lower semicontinuity in the Kuratowski sense are

equivalent (cf [8], [9])
The following known result will be used in the sequel
LEMMA .1 [6]. For every I, let A(t, .) be an m-accretive multivalued operator from E to

2E {} satisfying the following condition:

(C1) There exist A0 > 0, a continuous function h I E and a nondecreasing continuous function

L- [0, oo)--+ [0, oo)such that for all A $ (0, A0)and for almost , s I,

Then D* (A(t, .)) and D(A(t, .)) are independent oft

So if A is as in Lemma 2.1 we may write D’(A):= D’(A(,.)) and D(A):= D(A(, .)); I

respectively

LEMMA . [10]. Let E be a Banach space and M a compact metric space If T is a lower

semicontinuous multivalued function on M and with nonempty closed decomposable values in L](I),
then T has a continuous selection.

3. EXISTENCE OF SOLUTIONS FOR THE PROBLEMS (P) AND ()
To prove our results we need the following lemmas

LEMMA 3.1. Let b be an element of CE([ r, 0]) and/3 be a positive real number The set



FUNCTIONAL EVOLUTION EQUATIONS 167

{ Io )X= u E CE([-- r,O]) u on I--r, 0] and u(t) b(O) + f(s)ds; f E K

is nonempty and convex, where Kz {f LIE(I) If(t)[ _< 5 a e on I} If E is reflexive then X s

compact subset of C6o ([ r, T]) If, in addition, E is separable then X is metrizable

PROOF. It is obvious that X is nonempty, convex and equicontinuous and that the set

{u(t) u X}; t I, is bounded So, ifE is reflexive then, X is relatively compact in CEo([- r,T]) by
Ascoli’s theorem Let us verify that X is closed in CE ([- r, T]) Let (u,) be a sequence in X
converging to u CEo ([- r, T]) Then u on [- r, 0] and for each n > 1 there exists f,, K
such that un(t)- b(0)+ f f(s)ds; I Since E is reflexive, K; is weakly compact in LE(I)
Hence, the sequence (f,) has a subsequence, denoted again by (fn), converging weakly to f Ko
Then u(t) g.,(O) + f f(s)ds; I This proves that X is closed in CEo ([- r, T]) Now if E is

separable then so is L(I) Consequently, Ks is metrizable Since X is isomorphic to {@(0)} Kz,
then X is metrizable

LEMMA 3.2. Let G be a multivalued function from Eo to the nonempty closed subsets of E such

that G is lower semicontinuous in the Kuratowski sense. If (xn) is a sequence converging to z in Eo,
then for every z E,

lirn supd(z, G(xn)) <_ d(z,li.rnoo_, infG(x,)) _< d(z, G(x)).

PROOF. Let y lim,_,ooinfG(x) Then there exists a sequence (y,) such that y G(xn)’n >_
and y, y as n c For any z E E we have

lim supd(z, G(x)) <_ lim sup[[z y,[[ [[z y[[,

which proves the first inequality The second inequality follows from the lower semicontinuity ofG
TttEOREM 3.1. Let E be a reflexive separable Banach space Let A(t,.)" I be an m-accretive

multivalued operator from E to 26-{} satisfying condition (C) together with the following conditions

(C2) There exist z > 0 such that for all x E E, the function w (I + A(t, .))-1 belongs to

L2E(I)
(C3) For all r > 0 there exists 6(r) > 0 such that for all A > 0 and all x (A) with [[x[[ < r,

IIJA(O,) 11 < ().

Let F be a measurable multivalued function from I x C([- r, 0]) to P(E) satisfying the following
conditions

(F1) There exists a > 0 such that

sup{]lull y F(t, u)} _< a, V(t, u) I x CE([- r, 0]).

(F2) For all I,F(t, .) is lower semicontinuous in the sense ofKuratowski from CE([- r, 0]) to

(Fa) For all u Cs([ r, 0]) the multivalued function F(t, stu) admits a measurable selection

Then for every CE([- r, 0]) with @(0) E D*(A), the problem (P) has a solution.

PROOF. We split the proof into the following three steps

(1) Let f E Ko { LE(I) II(t)ll _< aa.e on I}. Since A satisfies conditions (C), (C) and

(C3), then by Theorem 4 of [5], there exists a unique absolutely continuous function uf :I E such

that

(i) u’l(t A(t, u(t)) + f(t) a e. on 1, u,(0) (0),
(ii) Iluz(t)l _< 1 (O -[- 1)T --[-- L(r)suptezllh(t)[[ + 5(r),Vt I, where

r (x + L(I](0)II)) + [A(0, x0)l,
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(iii) the function f u/is continuous from Ko to CE (I)
(2) Set X1 (U CE([- r, T]), u -= on [- r, 0] and u(t) (0) + ff(s)ds, f Ks } By

Lemma 3 1, X1 is a compact subset of Co([- r, T]) and is metrizable. Define a multivalued function T
on X1 by Tl(u) {f Ka f(t) F(t, stu) a e on I} In this step we prove that T1 has a continuous

selection V’X Ko For this purpose, we show that T satisfies the conditions of Lemma 2 2

Condition (F3) assures that the values of T1 are nonempty Moreover, if D is a measurable subset of I
and gx, g2 Tx (u) for some u X1, then the function g Nogl + Nt-Dg2 belongs to T1 (u), where N
is the characteristic function. Then the values of T1 are decomposable It remains to prove that T1 is

lower semicontinuous Since X1 is compact metrizable in CEo([- r, T]), it suffices to show that T is

lower semicontinuous in the Kuratowski sense So, let (u,) be a sequence in X converging to u X l,

with respect to the topology on Co([- r, T]) and let g Tl(U) Since F is measurable, then for all

n > 1 the multivalued function

B.(t)= {z F(t, stun)’llg(t)- zll- d(g(t),F(t, stu.))}

has a measurable selection g I E. Thus, by Lemma 3 2, for all I,

lira Ilg(t) g(t.)ll < lim supd(g(t),F(t, stu.))

<_ d(g(t),lirn inf F(t, stu))
d(g(t),F(t, stu)) O.

This means that T1 is lower semicontinuous and hence there exists a continuous function V X Ko
such that V (x) T(x), V x X

(3) Define a function O’Xl-- X by O(z)= ul,f V(x) By (iii) of the first step, 0 s

continuous Hence, by Tichonoffs fixed point theorem, there exists u X such that

u u,f Vx(u) T(u) This means that u’(t) A(t,u(t)) + f(t) and f(t) F(t, stu) ae on

I The theorem is thus proved.
TItEOREM 3.2. Let H be a Hilbert space and F be a measurable multivalued function from

1 x CH([- r, 0]) to P(H) satisfying conditions (F), (F) and (F3) Let F be a multivalued funcuon

from I to the family of nonempty closed convex subsets of H, with compact graph G and satisfies the

following conditions.

(F1) There exists -), > 0 such that IIx-projr(t)xll <_ ( t) for all (t,x) G and all z I, (t < -)
(F2) The function (t,x) 5(x,F(t)) sup{(x,y) "y F(t)} is lower semicontinuous on

I x Bo, where Bo is the relative weak topology
Then for all CE([- r, 0]) with b(0) F(0), the problem (Q) has a solution

PROOF. We split the proofinto the following three steps

(1) Let f Ko Since F has a compact graph and satisfies conditions (F) and (F) then by

Theorem 3 11 ], there exists a unique absolutely continuous function u/ I H such that

(i) u(t) Nr(tl(u(t)) + f(t) a.e. on I,

(ii) u/(0) (0), ul(t) r(t), v e z,
(iii) Iluy(t)ll <_ T(7 + a),’t I and the function ful is continuous from Ko tOCH

(2) Set X2 {u CH([- r, T])" u on [- r, 0] and u(t) (0) + ff(s)ds, f K& and

define a multivalued function T2 on X2 by T(u) {f Ko f(t) F(t, stu) a.e on I} As

in the second step of the proof of Theorem 3.1 we can show that T2 has a continuous selection

(3) Define the function 0 X2 X by 0(x) ul, f V2(x) As in the third step ofthe proof of

Theorem 3.1, we can show that there exists a unique u X2 such that u uI, f T2(u)
Clearly u is a solution of (Q)
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4. EXISTENCE OF INTEGRAL SOLUTIONS FOR TI’IE PROBLEM (P)
WI’IEN TI:IE OPERATOR A IS INDEPENDENT OF TIME
In this section A denotes a multivalued operator from E to 2E- {8} Consider the evolution

equation

’(t) -A(u(t.))+f() ae onI
(P’)

u(O) xo D(A),

where f LI(I) By an integral solution of (P’) we mean a continuous function u I D(A) with

u(0) x0 such that

Itu(t)- zll _< Ilu(s)- zll + [u(r)- z, f(r)- y]+dr,

for each z D(A), y A(z) and 0 <_ s <_ < T, where

[Xl,X2]. =lim([[Xl /hx2[ --[[Xl[[)/h, VXl,X2 g.
hi0

It is known that [7] if A is an m-accretive operator then for each (xo, f) D(A) x LE(I), the problem

(P*) has a umque integral solution uf, such that the function f uI is continuous In this section we

are concerned with the existence of integral solutions ofthe functional evolution equation

’(t) -A(u(t))+F(,su) ae on/
(P*’) u-- on [- r,0],

where F is a multivalued function from I CE([- r, 0]) to 2E {), q; > 0 is the operator of

translation defined in section and is a given function, belongs to CE([- r, 0]) with b(0) D(A)
By an integral solution of (P**) we mean a continuous function u- [-r, T] E with u on

[- r,]0, such that u is an integral solution of the evolution equation u’ (t) -A(u /f(t),u (0) (0),
where f LE(I) and f(t) F(t, su), a e on I

We say that the operator A E 2E {} has the (M)-property ([7], [12]) if for each xo D(A)
and each uniformly integrable subset Q of LIE(I), the set {us g Q} is a relatively compact subset of

CE(I) where us is the unique integral solution of the evolution equation u’() -A(u(t)) + g(t) a e

on I; u(0) x0. It is well known that ([7], [12]) if the proper operator -A generates a compact

semigroup (via Crandall-Liggett’s exponential formula [3 ], 13 ]), then A has the property (M)
TiIEOREM 4.1. Let E be a Banach space and A an m-accretive multivalued operator from E to

2E {} having the (M)-property. Let F be a measurable multivalued function from I x CE([- r, 0])
to the non-empty closed subsets of E satisfying the condition (Fs) together with the following

conditions

(F4) There exists a function h L(I) such that

sup{llzll z e F(t, )} < h(t), V (t, ,) e C([- , 0]).

(Fh) For all I, F(t, .) CE([ r, 0]) E is lower semicontinuous in the Kuratowski sense

Then for all CE([- r, 0]) with q.,(0) D(A), the problem (P**) has an integral solution

PROOF. Consider the set Q {f LE(I) [If(t)[[ _< h(t) a e. on I} One can easily show that

Q is nonempty and uniformly integrable subset of LE(I) As mentioned above, for each f Q there

exists a unique continuous function uI I D(A) such that uI is the unique integral solution of the

evolution equation u’(t) A(u(t)) + f(t), u(0) q.,(0) and the function f uf is continuous from Q

to CE(I). Let X" ={u,}CE([-r,T])’fQ}, where u)= on I-r, 0] and u"l=uI on I

Since a has the property (M), X" is compact in the metric space CE([- r,T]) Now, define a

multivalued function T on X:" by T(x) {f LE(I) f(t) F(t, sx) a e on I} As in the second

step of the proof of Theorem 3 1, we can show that T has a continuous selection V X* LE(I)
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Also, define a function # "X* X*, #(z) u), f V(z) The function # is clearly continuous and

hence has a fixed point a: E X* It is obvious that z is the desired solution

5. EXAMPLES
In this section we give some examples illustrating the scope ofthe results developed in sections 3 and

EXAMPLE 1. Let for all I, A(t) B- h(t) where h :I E is integrable and B is an m-

accretive operator on E Clearly A(t) is m-accretive for all I Let .k > 0, s, I and z E Then
1

A(t,x) A(s,x)[] <_ - JA(t,x) JA(s,x)[ <_ [Ih(t) h(s) [.

Hence condition (C1) ofLemma 2.1 holds

EXAMPLE 2. In [6] there are several examples for operators A such that for every I, A(t) is

m-accretive and satisfies condition (C1)
EXAMPLE 3. Let H be a real Hilbert space with inner product (., .) and let #:H H be a

proper lower semicontinuous convex function. The set i)#(x) {z H :#(x) <_ #(y) + (x- y, z}
for each y H} is called the subdifferential of # at the point x We recall that D(0#)=
{x H 0#(x) is nonempty}. Now if we define an operator A:D(A) DO(#) 2H by

A(x) O#(x), then A is m-accretive and the following conditions are equivalent [7]
(i) For each ,k > 0, the resolvent JA is a compact operator

(ii) The function # is of compact type

(iii) The semigroup generated by the operator A is compact

EXAMPLE 4. Take E L([0, zr]) and let us define A" D(A) C_ E E by Au u()(t) for

each u D(A) where D(a) {u E u(/ E E, u(0) u(Tr) 0} The operator A is m-accretive

and the semigroup {S(t) > 0} generated by -A(S(t) limn-oo (I+- A) -n) is compact [7]
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