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ABSTRACT. Fully idempotent near-rings are defined and characterized which yields information on

the lattice of ideals of fully idempotent rings and near-rings. The space of prime ideals is topologized and

a sheaf representation is given for a class of fully idempotent near-rings which includes strongly regular

near-rings.

KEY WORDS AND PHRASES: Fully idempotent and strongly idempotent near-rings, strongly

regular near-rings, prime and irreducible ideals, sheaves.

AMS SUBJECT CLASSIFICATION CODES: Primary 16Y30, Secondary 16E50.

1. INTRODUCTION AND PRELIMINARIES

For basic terminology and results on near-rings, see [10] and [11]. Throughout this paper R will

denote a zero-symmetric right near-ring. For subsets S and T of R, (S) will denote the ideal generated

by S and, as is customary, ST {stls E S, T). If I is an ideal of R, I is called prime if whenever

A, B are ideals with AB C_ I then either A C_ I or B if_ I; I is completely prime’if ab I => a I or b 6 I;

I is semiprime if A C_ I => A C_ I; I is irreducible (resp. strongly irreducible) if A n B I => A I or

B I (resp. A B C_ I => A C_ I or B C_ I}. Thus a prime ideal is semiprime and strongly irreducible

and any strongly irreducible ideal is irreducible. Note that unlike the situation in rings a prime ideal I

need not have the property aRb C_ I => a I or b E I. Finally R is defined to be strongly regular if R

is von Neumann regular and reduced (has no nilpotent elements). Equivalently (see [9] and [12]) R is

strongly regular iff for all z R 3a, b R such that x x2a bx2.

In section 2 we will define and characterize fully idempotent near-rings, and topologize the set of

strongly irreducible ideals. In section 3 a sheaf representation of a class of fully idempotent near-rings

will be given, a class which includes the strongly regular near-rings. Of course rings are zero-symmetric

near-rings, and while some results of this paper generalize what is known in the ring-theoretic case, other

results (e.g. Propositions 2.3, 2.5, 2.6) appear to be new for both near-rings and rings. Finally, we note

that in [13] and [14] Szeto has given an alternate approach to sheaves for classes of unital near-rings (and



146 J. AHSAN AND G. MASON

see concluding remark).

2. FULLY IDEMPOTENT NEAR-RINGS

A ring R is fully idempotent if each ideal I of R is idempotent, i.e. if/ 12. Several character-

izations of these rings were given by Courter [7] and they play an important role in the study of (yon

Neumann) regular and V-rings [6], both of which are proper subclasses of fully idempotent rings. In

this section we examine the near-ring analogue of fully idempotent rings. We begin with the following

definition.

DEFINITION 2.1. A near-ring R is called fully idempotent if for each ideal I of R, I =/I2).
PROPOSITION 2.2. The following assertions for a near-ring R are equivalent:

1. R is fully idempotent.

2. For each pair of ideals I, J of R, I 3 J <IJ).
3. The set of ideals of R (ordered by inclusion) forms a lattice (,V,^) with I V J I + J and

I ^ .I (IJ) for each pair of ideals I, .] of R.

PROOF. (1) (2): For each pair of ideals I,.I of R, we always have IJ C_ I t3 J. Hence

(I.]) C_ I .]. For the reverse inclusion, let a I t3 .] and let (a) be the (two-sided) ideal generated by a.

Then a (a) ((a). (a)) C_ (IJ). Thus I t3 J C_ (IJ). Hence I J (IJ).

(2) = (3)" The set of ideals of a near-ring ordered by inclusion forms a lattice under the sum and in-

tersection of ideals ([11], Thm. 2.20). Thus for each pair of ideals I,.] of R, I V J I + J and by the

assumption, I ^ .] I gl .] (IJ).

(3) = (2): For each pair of ideals I,.] of R, 1.1 C_ I,] always. Hence (I.]) C_ IC.]. On the other hand,

since by the assumption (I.]) is the greatest lower bound of I and J, therefore I 3 J C_ (I.1). Hence

J <zJ>.
(2) = (1)" Taking I J in the hypothesis, we have I (i2) for each ideal I of R. Hence R is fully

idempotent.

EXAMPLES. If a near-ring is biregular (in the sense of Betsch) then, among other defining prop-

erties, for every r R there is a central idempotent e such that (r) Re [11, p. 94]. R is biregular in

the sense of Szeto if for all r R there is a central idempotent e such that {’ r, rs,} Re. As observed

in [9, Prop. 4] these are biregular in the first sense too. Moreover biregular and regular near-rings are

fully idempotent. In fact, they satisfy the stronger condition that for all ideals I, J, I Cl J IJ. For if

R is regular and x I J then z zyz for some y so z IJ. Conversely IJ C I Cl J is always true.

Similarly if R is Betsch-biregular and z I .1 then /z) Re so z re tee IJ. Note that in [14]
Szeto defined a unital near-ring R to be strongly biregular if it is regular and all idempotents are central.

These are, in fact, precisely the strongly regular near-rings as we have defined them ([9]).
It will be useful in the sequel to refer to near-rings with the property I f3 J IJ for all ideals I, J.

We will call them strongly idempotent.

Recall that the set of all ideals of a near-ring under sum and intersection forms a complete modular

lattice (cf. [9], Thm. 2.20}. This lattice, however, need not be distributive. Below we show that the ideal

lattice of a fully idempotent near-ring is a complete Brouwerian, and hence distributive, lattice. A lattice

is called Brouwerian if for any a, b , the set of all z satisfying a ^ z < b contains a greatest
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element c, the pseudo-complement of a relative to [4].

PROPOSITION 2.:3. Let R be a fully idempotent near-ring. The set R of ideals of R (ordered

by inclusion) is a complete Brouwerian lattice under the sum and intersection of ideals.

PROOF. As remarked above R is a complete lattice under the sum and intersection. We now

show that L:R is a Brouwerian lattice. Let B and C be ideals of R. By Zorn’s lemma there is an

ideal M of R which is maximal in the family S of ideals I satisfying I N B C_ C. We wish to show

M is the greatest element of S. If M R we are done. If M 7 R and I E S then IB C_ C so

(I + M) Cl B ((I + M) B) C_ (IB + MB) c_ C. BymaximalityofM, I+M M,i.e. I C_ M as

required.

COROLLARY. n is distributive.

PROOF. Follows from ([4], ii.ii).

The next proposition shows that the concepts of prime, irreducible and strongly irreducible coincide

for fully idempotent near-rings. First we record the following existence result for irreducible ideals-

LEMMA 2.4. If I is an ideal of any near-ring R and if a I, there exists an irreducible ideal If

such that I C_ K and a K.

PROOF. By Zorn’s lamina, S {ideals L ]I C_ L, a /,} has maximal elements. Let K be one.

If K B Cl C where B and C both properly contain K then they both contain I so by maximality of K

they both contain a. But then a E B Cl C K, a contradiction.

COROLLARY. Every proper ideal is contained in a proper irreducible ideal.

PROPOSITION 2.5. Let R be a fully idempotent near-ring and let P be an ideal of R. Then

the following assertions are equivalent"

1. P is irreducible.

2. P is strongly irreducible.

3. P is prime.

PROOF. As (3) = (2) = (1) is clear, it suffices to show that (1) = (3). Suppose IJ C_ P for

ideals I,J of R. Since R is fully idempotent, I Cl J IIJ} by Proposition 2.2. On the other hand,

IJ C_ P implies that {IJ} C_ P. Hence IN J C_ P. This implies that (ICl J)+P P. Since R is

fully idempotent then by the corollary to Proposition 2.3, the ideal lattice of R is distributive. Hence

P (I C J) + P (I + P) N (J + P). Since P is irreducible, I + P P or J + P P. This implies that

I _C P or J C_ P. Hence P is a prime ideal.

PROPOSITION 2.6. Let R be a fully idempotent near-ring and L: be the ideal lattice of R

under the sum and intersection of ideals. Then the set BR of direct summands of R is a Boolean sublattice

of /.

PROOF. The proposition will follow if we show that the sum and intersection of summands of R

are summands of R; that is, if A and A2 are direct summands of R, then A - A and A A2 are direct

summands of R. Let B: and B2 be the cosummands of A: and A, respectively, that is, A 4- B R and

ACB (0); for 1,2. We show that A: / A is a summand with BB as its cosummand. Suppose

I (B B2)4-A 4-A R and let z R, z I. By Lemma 2.4 there is an irreducible (hence by Proposi-

tion 2.5 a strongly irreducible) ideal P such that I C_ P, x P. Then B B2 C_ P so B: (say) C_ P. Since
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A1+B1 R, A1 gP. But A1 C_IC_ Pwhichis

and Yk 6 A, (k 1,2). Then (Yl + y2)z glz + y2z 6 A1B1 + A2B2 C (A1 t3 B1) + (A2VI B) (0).

Hence, by Proposition 2.2, (A1 + A2) f3 (B1 f3 B2) (0). Therefore A1 + As is a direct summand of R

with (B1CIB2) as its cosummand. Using an identical argument, we can show that A1 tq A2 is a summand

with B1 + B2 as its cosummand.

We now prove the following characterization theorem for fully idempotent near-rings.

THEOREM 2.7. The following are equivalent:

1. R is fully idempotent.

2. Every proper ideal is the intersection of the prime ideals containing it.

PROOF. (1) (2). First note that if R is fully idempotent every ideal is contained in some

prime ideal by the corollary to Lemma 2.4, and Proposition 2.5. Let P be the primes containing I so

I C_ tqP. Conversely if a I there exists a prime ideal P with I C_ P and a P.

(2) (1). Let I be an ideal of R. If (I2) R then I (12). If (Is) # R then I C_ (I2) f3P C P so

I C_ P for all a, i.e. I C_ VIPo (I2). Since (i2) C_ I we are done.

COROLLARY 1. R is fully idempotent iff each ideal is semiprime [11, Prop. 2.93].
COROLLARY 2. A fully idempotent near-ring is a subdirect product of prime near-rings [11,

Thin. :2.95].

Let SR denote the set of proper strongly irreducible ideals of R. Since every near-ring has minimai

prime ideals [11, Cot. 2.77], Sa is not empty. For any ideal I, define 19; {J 6 SII g: J} and let

T(Sa) {OtlI is an ideal of R}.
THEOREM 2.8. The set T(SR) constitutes a topology on the set SR and if every irreducible

ideal is strongly irreducible the assignment I Ot is a lattice isomorphism between the lattice /R of

ideals of R and the lattice of open subsets of

PROOF. First we show that the set T(SR) forms a topology on the set SR. Since (0) is contained

in every ideal, therefore 0(0) {J fi SR (0)

because elements of SR are proper. Now let 1911,1912
S/ I J and 12 J} {J SR 11 f312 g J}. Now consider an arbitrar,y family (Ix)e^ of ideals of

R. Then Ot, [,.J{J SR "I J}

{J fi SR BA A such that I,\ J} {,IfiSR’I J}=Oix. Since I is an ideal of R

([11], Thm. 2.1), it follows that _J19I T(SR). This shows that the set T(SR) of subsets t9i, with

I fi R, is a topology on the set SR. Define " R T(SR) by setting (I) 19I. It is easily verified

that preserves finite intersections and arbitrary unions. Hence is a lattice homomorphism. Finally

we show that is an isomorphism. For this purpose, we show that 11 12 1911 Oi for 11,12 in

R- Suppose OI 19t. If 11 12, then x 11 such that x ( I2. Then by Lemma 2.4, there exists

an irreducible and hence a strongly irreducible ideal J of R such that 12 C_ J and x J, i.e. 11 J.

Hence J Oil. But Oll 0i, so J fi 19h- This means that 12 J. But this is a contradiction. Hence

11=12.
Recall that a near-ring R is indecomposable ([11, 2.42]) if it is not the direct sum of non-trivial

ideals.
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PROPOSITION 2.9. If R is a w,,ar-riwg i, which ow,ry irreducibl(, ideal is st rong;ly irre,tucibl,

ProoF. lib,call thai topological space, is covwc,ctecl if a.d only if it hs wo vol,.pt.y prop(,r

a.d ciosl subs,ts. 1 is u ici,l oF I. th,w (-) i both opo. a,d clos,d iF and owl.v i there oxists

idol . of s.ch that (’)1 U . ,’ and (’)1 (’). - v the, I-I corrOSlOnd,nce cff the preceding

"i’hor’vv, this iv.pli,s thai + . / nd . (0). ti’.c’ (-) is bot.i OlWV awd cios,d i n.d only

if is a direct szvwvwavzd of R. Th.s it. follows that T(.S’R) is n connect’d spa(’(, if azz(! only if R has

nowlrivial clir,ct, suwnawcls, that is. is ]ir,ct.lv

’e ncl this sctio by discussiug near-rings i wllici c,ach irreducible iclc,l is s rongly irP,ducible.

lJv Proposition 2.. ullv idevnpotnt llaP-PiS EP 11 this class (a.wd in this cs, .’ is t.ho pv’izvle spc-

trlll al T(,q) t,h(’ spectra] space). Mor, genera.lly in a.wy distPibtiw, lattice il is ,sy to show t.lvat

v.,,t-irredcillo l,,v.ents arc, strongly iPPeduciblo (for oxa.vvpl’, dualio [1, l.’vvvva 1. . s]). Accv’d-

ing t.o [l, (’h. IX] Pings with the st.a.t.ed proprt.v a.PP pr,cisolv those, for which 11., co.clzsiow of

(’]fiwese relnaincler Thoorev holds, a.nd a xav.iwa.tion of 1.h, proof for Pings shows thai il holds

oPO-lTi1ll@lPC oP-P]l 1o. Exillp](’ ()[ ii(,i’-Pll wh(’h P(, o[ PllS ll(I which haw’ a. distributive

Int.tic of idonls ar th unilnl n0nE-Pings fop whici no homomorphic it.g’ is a ring [l 1. (’OF. 2.2].

8. STRONGLY IDEMPOTNT AND STRONGLY RULAR NAR-RINGS

W first forv,zlai, tho d,nition cff sh. or IIEP-P[II ol]ows:

DFINITIOY 3.1. l,’l, X Iw n topological spac and let T(X) b, the lOP o[op(’ SOI, O[

a.v,d iwclusion v.aps. A presh(,[ of ll(,ar-rillgS on X is cotrava.rilli [linctor [rOlll Lhe cat.ogory T(.’)

1.o th lOPy O[ neaP-rings, that is. il consists of the dta:

(a) For every open set X. there +,xists a near-ring t>(lr), and

(b) for ew,Py inclsion 1" I/of OlWW s,ts. h,v’, ,xist a near-rinR hovvnonworlhisv, p[, P(I P( I," ),

subj+,ct to the following conditions:

I. I’() (0), wh,ro ++ is lh, evwpty set of

2. p[’r, P(I) P(I) is tt, identity map. and

3. if B’ I," I ar(’ three open sets, lhen Pw Pt’ o Pv.
if !’ is a presheaf on X. then P(I) is ca,llod a section of the pr,sh{.af P on the, s,l I; a,d th{, vvaps

ptv arc, called restriction n,al,S, for which ti,{, notation rrlv is occa.sionally ,,s,d inst,,ad of p[.(,
wheP, t P(I! ). The’ pr.sh{,aF P is call,d a shea, if the following a,ddil, iona, conditio.s a,v’{, sa,tisfi{,d"

4. if I is an open set anti (I,).^ is an open covering of I: a,nd if ,,1. glv for o’,/ P(I )

and for all I,\. the,, a g;

5. if I: is an Ol,’n set, and (I,).\^ is an open covering of I; and if there are ,,ieneuts

for each $ A such that [’or each pair A.it A,

t,.\la, tr,l,,. thon 3rr P(I;)s.t. cl, r.\ for ,.ach $ A.

If a preshea, satislies condition (,I) only, it is called sepa,ra,ted [2].
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Next we state some preliminary lemmas. We write E(I) for the near-ring generated by all the

R-endomorphisms of the left R-group hi.

LEMMA 3.2. If R is a strongly idempotent near-ring then for every pair of ideals I. J with .1 C_ I.

any R-homomorphism from J to I factors through J.

PROOF. Since JcI JI then when J C_ I we have J JI. Also J J so ifa E J then

a alb aa3b for a, J. b I. Then f(a) af(a3b) E JI J.

We now describe a sheaf of near-rings on the prime spectrum of some near-rings.

THEOREM 3.3. Let R be a strongly idempotent near-ring in which (R, +) is abelian. The

assignment )I E(I) FR(I) defines a sheaf F/ of near-rings on the prime spectrum of R.

PROOF. First we prepare the data for the existence of a presheaf. FR(I) E(I) is a near-ring

(in fact a ring) for every ideal I of R. We now define a restriction map: pt[j E(I) E(J), whenever

0, C_ O1, that is, when J C_ I for ideals I,J of R. Let 6 _,a,e, E(I). Define PIJ(&) cilJ. Note

that ciI.j E(J) by Lemma 3.2. Clearly. pF3 is a near-ring homomorphism. Thus F, satisfies the condi-

tions of a presheaf. We now show that FR is separated. Let I ’ I and suppose f, g F(I) such that

fll gix, for all A e A. For each x I, we can write x x+...+z, forz I. Since (R, +) is commu-

tative, wecan write f(z) f(x)+f(x2)+...+f(x,.,) g(xl)+g(x2)+...+g(x,) g(x+...+x,.,) g(x).

Hence f g, and so Fn is separated. Finally, in order to show that F is a sheaf, we verify condition (5) in

Def. 3.1. Let I I be an ideal of R, and suppose for each ,k,# E A, f E(I) and f, E(I,,) such

that flcI,, f,lIl,. Define f" I + I I + I as follows: For x I + I,, write x x + x with

x), I. and x I. We now define f(x) f(x)) + f,(x). We show that f is well-defined. Suppose

x=x+x=x’ +x,.’ Then since (R, +) is commutative, wehavex-x’ =x’ -x, II. Hence

f(x-x) f,(x-x,). Therefore f(x,)+ f,(x,,) f(x)+ f,(x). Now suppose x

_
I,g(I: +I)

where I is an ideal of R for some E A. Since every strongly idempotent near-ring is fully idempotent,

by the corollary to Proposition 2.3, we can write I,,D(I +I,) (I,,DI.,,)+(IVI,). Thus x /C(I +I,)
means that x (I,I.)+(I,,gI,). Hence wecan write x x+x, where x /I andx I,VI,.
Thus f(x) f.\(x,) + f,(x,) f,,(x.\) + f,,(x,) f,,(x: + x,) f,,(x). This implies that the family

{I A A) is stable under finite sums. We can now define a map f I I which satisfies

condition (5) in Def. 3.1. Suppose z I. Then z x +... + z, where x I. Since x belongs

to a finite sum of I’s, by the preceding arguments, we can suppose that x E I for some #. Hence we

can define .f(x) f,(x), which is well-defined since two different f, agree on x when f,(x) is correctly

defined. Clearly f e E(I) which extends each f for A. This proves that Fn is a sheaf of near-rings.

Strongly regular near-rings satisfy the hypotheses of Theorem 3.3 (see [11, 9.159a]). Further infor-

mation about these near-rings is obtained by using the work of Cornish [5]. For any prime ideal P, let

OR {xlxy 0 for some y P}. As observed in [6] any reduced zero-symmetric near-ring is a reduced

system in the sense of [5, p. 883] and so we can apply [5, Thm. 3.5] to obtain:

THEOREM 3.4. For any prime ideal P of a reduced near-ring, OR is the intersection of the

minimal prime ideals contained in P. Hence P is a minimal prime iff P Op.

The next result is known in the uaital case (eg. [11, Thm. 9.163]).
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PROPOSITION 3.5. If R is strongly regular, every prime ideal is a minimal prime ideal.

PROOF. First note that all prime ideals in a strongly regular near-ring are completely prime [3.
examples following Prop. 5.4]. Let x E P and choose r P. If rx 0, then xr 0 since R is reduced,

so x Op and we are done. Ifrx 0 then rx rxsrx for some s R. Hence (r-rxsr)x 0. Let

y r- rxsr. Then y P or else r P (since x P). Hence x Ov as required.

THEOREM 3.6. If R is strongly regular, T(PR) is Hausdorff.

PROOF. Suppose P and Q are distinct prime ideals with a E Q, a { P. Then a OQ so ab 0

for some b Q. Because prime ideals are completely prime O() and O(b) are disjoint open sets containing

P and Q respectively.

CONCLUDING REMARKS. As mentioned in the introduction, a different approach to sheaves

of unital zero-symmetric near-rings was taken by Szeto. He used the prime ideal spaces of the Boolean

algebra of central idempotents. In [14] he further concluded that an approach based on the prime ideal

space of R was "unlikely for a near-ring due to the fact that the sum of ideals is not necessarily an

ideal and an ideal is not necessarily embedded in a prime ideal". However, the last statement is false for

,unital near-rings [11,271 and 2.72] and the sum of ideals is generally defined to make the first statement

incorrect [11, Theorem 2.1].
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