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ABSTRACT. Let (V.I') and (V'.I" ) be Gamma-Banach algebras over the fields F, and F, isomorphic
to a field F which possesses a real valued valuation, and (V,T') ®P (V'.I"), their projective tensor product.
It is shown that if D, and D, are a - derivation and a'- derivation on (V,I") and ( V'I"" ) respectively and
u= 2’ x, ® y, is an arbitrary element of (V.I') ®p (V'.I'"). then there exists an a® a'- derivation D on
wv.n ®,, (V'.I'") satisfying the relation

pw =2 [@, %) ®y,+x® )]

and possessing many enlightening properties. The converse is also true under a certain restriction.
Furthermore, the validity of the results I DIl=1ID Il +1ID, Il and sp (D) =sp(D,) + sp (D,) are fruitfully
investigated.
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1. INTRODUCTION

I'— Banach algebras and « - derivations are generalisation of ordinary Banach algebras and
derivations respectively. The set of all m x n rectangular matrices and the set of all bounded linear
transformations from an infinite dimensional normed linear space X into a Banach space Y are nice
examples of I'- Banach algebras which are not general Banach algebras. Similarly a derivation can't be
defined on these spaces as there appears to be no natural way of introducing an algebraic multiplication
into these. So, a new concept of derivation known as a- derivation is introduced on a I'- Banach algebra.
Bhattacharya and Maity have defined a I'- Banach algebra in their paper [1] and have discussed in their
another paper [2] various tensor products of I'- Banach algebras over fields which are isomorphic to
another field with areal valued valuation by using semilinear transformations, [3]. Derivations and tensor
products of general Banach algebras are discussed in many papers, [ 4.5.6,7.8]. Now there are some
natural questions : Does every pair of derivations D, and D, on Gamma Banach q‘gebras (V. and (VI
respectively give rise (o a derivation D on their projective tensor product? If yes. then can one estimate
the norm of D with the help of norms of D, and D, ? Can one evaluate the spectrum of D with the help
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of those of D, and D, ? Are the converses of the above problems true? We give affirmative answers to some
of these questions. The useful terminologies are forwarded below :

DEFINITION 1.1. LetX (F))andY (F,) be given normed linear spaces over fields F, and F,, which
are isomorphic to a field F with a real valued valuation, (refer to Backman's book [9]). If u= 2 x®y)
is an element of the algebraic tensor product X @ Y, then the projective norm p is defined by

pw =inf {SHx Iyl I xeX,yeY },
where the infimum is taken over all finite representations of u. Further the weak norm w on u is defined by
w(u)=sup {I%—"C, f(x). (8,0 - feX, ge Y Ufliclligl<t }

[Here X" and Y" are respective dual spaces of X and Y; and F,, F, are isomorphic to F under isormorphisms
§, and CZ] . The projective tensor product X ®pY and the weak tensor product X ®w Y are the completions
of X ® Y with their respective norms. For details, see Bonsall and Duncan'’s book [10].

DEFINITION 1.2. Let(V,I')bea I'- Banachalgebraand a, afixedelement of I'. Then a-identity,
1.. is an element of V satisfying the conditions xal, = x and 1_ax=x forevery x in V.

DEFINITION 1.3. A linear operator D of (V,I") into itself is called an a - derivation if

D (x a y) = (Dx) ay + xa (Dy), X,y € V.

Every x & V gives rise to an a- derivation D, defined by D (y) = xay — yax. Such a derivation is called an
a-inner derivation. Further, if (V,I") is an involutive I'- Banach algebra with an involution * , then an
a- derivation D is called an a- star-derivation if Dx* =— (Dx)*, x* being the adjoint of x. Again, we
define an operation o by xoy = xay + yax, X,y ¢ V. A linear map D on (V, I') is called an a-Jordan
derivation if D (xoy) = (Dx) oy+xo (Dy) forall xand y in V.
2. THE MAIN RESULTS

Throughout our discussion, unless stated otherwise, (V,I' ) and (V',I") are (":amma-Banach algebras
over F, and F,, isomorphic to F which possesses a real valued valuation ; a and ' are fixed elements of T
and I'" ; and 1,1 are a- identity and a'-identity of V and V' respectively. Moreover, suppose that
M1 li=k = Oand ll_N=k,=0.

The following proposition is fundamental for our purpose, and we refer to Bhattacharya and Maity
[2] for its proof.

PROPOSITION 2.1. The projective tensor product ( V,I') ®p (V.I'") with the projective norm is
a I'®I'- Banach algebra over the field F , where multiplication is defined by the formula

(x®@y)(y®4)(xX®Y)=(xyx) ® (ydy),wherexys Vix,y'e Vi yel;0¢ I'
THEOREM 2.1. Let D, and D, be bounded a- derivation and a'- derivation on (V.I' ) and (V'.I")

respectively. Then
(i) there exists a bounded a® a'- derivation D on the projective tensor product (V. T') ®p (V.I'") defined
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by the relation
D) =2 [(D, x)®y, +x,® D, )',)] . for each vectoru=Zx ®y ¢ (VI)®, (V.T").

(ii) If D, and D, are a- and o'~ inner derivations implemented by the elementsr_& V and s ¢ V' respectively
then Disana ® a' - inner derivation implemented by r, ®1 + 1 ®s .
(iii) If D, and D, are a- and a'- Jordan derivations, then D is an a ® a'- Jordan derivation.
@iv) If (V,I') and (V'I") are involutive Gamma -Banach algebras, and if D, and D, are a- and a'- star
derivations, then D is a® o' - star derivation.

PROOF. (i) WedefineamapD:(V,T) ®,, vIry-=(,r )®p (V.I'") by the rule

D(u) = 2|: [Dl x,®y +x ®D, Y.] for each vectoru=Xx®y,.
Clearly, D is well - defined. Before establishing the linearity of D, we first aim at proving the boundedness
of D. For any arbitrary elementue (V,I') ®p (V'.I") and &> o, the definition of the projective norm provides
a finite representation 23*] x' @y’ such that llull +&> 2.:1 IIx IHly" 1I. Therefore , for this representation

of u, we obtain
IDull == [Dl X, ®y, +x'® Dz)",)]ll
4 1 P

<z [1D,x @y, 1, +1x @Dy,
=2'3 [" D x' Iy i+1x' 1D,y "]. ( because a projective norm is a cross norm ).
<(ID, 1+1D, 1) = Wx' Illly']l, ( because D, and D, are bounded )
sK(IIu||p+£),whereK=I1D|II+IID2|l.
Thus, I Dull oS K (liull ,+E ). Since the left hand side is independent of ¢, an'd & was arbitrary, it follows
that IDufl <Kliull , foreveryue (V. I') ®,( V', T"). Consequently, D is bounded.

Next to establish the linearity, letu = 2" x, ®y, and v= 3: T R 5, be any two elements of
=1 =1

(V.,T)®,(V.I'). Thenu +v= 'fmxl®yl.wherexn =randy =s,j=12,..m.
=1

i
Now,D(u+v)=D(|§:x‘®yl)

="""l[ D, x,®yl+x,®D2y|]

:2':=l [Dl x,®yl+xl®D2y‘] +§:. [D]xl®y‘+x‘®D2y‘]

=i:=l[D. X®y +x® Dzy,]+2mj=l[D, (® s +1® DZSJ]=D(U)+D(V)‘

The boundedness of D implies that the rusult, D ( u+ v) = D(u) + D(v), is also true for any infinite
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representations of u and v. Similarly it can be shown easily that D(au) = aD(u) for any scalar a.
Consequently D is a bounded linear map.
To show that D is an @ ® @' - derivation, we suppose thatu=x @ yand v=r ® s are any two
elementary tensors of (V,T') @ p € V.,I'). Thenua®a'v=xar®ya's. Now
D@ua®a'v)=(D,xan®ya's +xar®@(D,y a's)
= [(D1 x)ar+xa(D, 1) ] ®ya's+xar® [ (D,y)a's +ya'(Dzs)]

= [(Dlx)ar®ya’s+xar®(Dzy)a‘s] +[xa(Dlr)®ya's+xar®ya'(Dzs)]

=(Du)a®@a'v+ua®a' (Dv).
Similarly, if u = Eixl ®y,and v=§12 r (o] 5, be any two elements of (V,T') ®p(V‘, I'"), then summing over
i aqd j wecan prove easily that D(ua® a'v)=(Du)a®a'v+ua®a'(Dv). soDisan a®a'- derivation.
(ii) Let D, and D, be a- and a'- inner derivations implemented by the vectors r, and s, respectively.
So, D, (x)=rax-xar, VxeVand D, (y)=sa'y —ya's,,Vye V.
Now, Du)=3 [ D, x,®y,+x.®D2yI]

=3 [(roa X-xar)®y +x @(sa'y,- yla'so)]

=3 [rnax|®yl-xlaro®yl+x.®soa' y-Xx®ya sv]

=z [, ®1,)@® @ )x®y) - x®y)@® @ )1 81,)
+(1,8'5)(@8a)(x, ®y,) - (x®y) (@8a) (1,85) |

=] 6®1,+1,85)@8x) x®y)-(x ®y,) (@®a) (,® 1,+1,85)]
=D, (u), wheret =1 ® 1 +1®s,
Consequently, D is an a® @' -inner derivation implemented by t_ .
(iii) The proof is routine.
(iv) Let D, and D, be star derivations. If u= 2. X, ®y, is an element of (V.I) ®, (V'.I' "), then the adjoint
ofuisgivenbyu' =2 x"®y"~ Now,
Du'=DZ x'®y,)

= 2. [an.‘ ®y ' +x'®D, yl’)]

=z [ -0, x) @y +x'® {'(Dzy.)‘}] , because D, and D, are star derivation.
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=-3 [ Dx)®y +x'® (D,y,)‘] =—(Du)*. So, D is a star-derivation. Q.E.D.

REMARK 2.1. (i) The above theorem can be extended to the projective tensor product of n number
of I'- Banach algebras.
(i) If u=x®1_¢(V.I') ®l7 (V',I'"), then from the definition of D, we get

Du=Dx® 1, because D,1_= 0 2.1

From this result, we can ascertain that for each derivation D on (V.I') ®p(V"I‘ ' ). there may not exist
derivations D andD,on (V.I) and (V'.I" ") respectivey such that D, D, and D, are connected by the relation
givenin Theorem 2.1. For example, let D' be an a®a' - inner derivation implemented by an elementr ®s_,
where s_is not a scalar multiple of the identity element 1 . Then

D'u=(r,®s ) (@®a)u-u(a®a’) (r,®s ), foreveryue (V.I ®P (V'.I''). Now if u=x@®] .. then

Du=(r, ®s) (a®a’) (xB1,) - x®1 ) (a®a’) (r, ® s )
=rax@sa'l -xar® 1 a's =(rax-xar)®s,
= (le x ) ®s_, where D, is a derivation on (V, I' ) implemented by r, ... (2.2)

From the resuits (2.1) and (2.2) we can conclude that unless s, is a scalar multiple of the identity element
1., D' (x® I_ ) may not be of the form x, ®1 ., where x, ¢ V, [x, may be different from x). This implies
that D' may not equal D in general. However, we have a converse of Theorem 2.1 as follows. Recall that
an element xeV is called an a - idempotent element if xax = x.

THEOREM 2.2. The following results are true :
(i) If Disaderivationon (V,I') ®p (V'.I'")such thatD (Z'x, ®y) =‘Zzl ®y,.zeVandy's are a'- idempotent
elements of V', then there exists an a'-derivation D, on V defined by the rule D x ® y=D (x®y) for all
x £V and for every a'- idempotent element y £ V';
(i1) If D is bounded, so is D ;
(iii) If D is an a®a'-inner derivation implemented by an element w of the form w=Zx ® y, where y's
are a'- idempotent elements, then D, is also an a- inner derivation implemented by the element Zx
@iv) If (V.I') and (V',T"*) are involutive Gamma-Banach algebras, and D is a star derivation, then so is D -
(v) If D is an a®a' - Jordan derivation then D, is an a- Jordan derivation;
(vi) If D is an a®a'- derivation on (V,I') ®, (V,I'')suchthat D (Il'x| ®y,) =§xl ®s, for a-idempotent
elements x's in V. and s V', then there exists an - derivation D, on (VT ') given by the relation
x @D,y =D(x®Yy) for every a- idempotent element x £V and for all elements y £ V'. The above results (ii).
(iii), (iv) and (v) are also true for D,.

PROOF. (i) We defineamap D, { V > V by

D x® y=D(x® y), for all x £V and for every a'-idempotent element y eV'.

Clearly, D, is well-defined. In particular, we have D, x ® 1 =D (x ® 1_), V x & V. We first establish the
linearity of D,. Let x, x, £V.
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Then D, (x, +x,) ®1,=D((x,+x,) ®1,)
=D (x, ®1_ .+ X, ®1)
=D(x,®1,)+D(x,®1,)
=Dx,®1_.+D x,®1))
=([Dx, +Dx,) ®1,
So, (D,(x,+x,) ® 1 )(f.g) = (Dx+Dx,)® 1 ){f.g), VeV’ VgeVv".

This gives, f(D, (x,+x,)) g(1,)=f (D, x+DX) g (1) VieV VgeV".
The Hahn-Banach theorem provides a functional g, V" in such a way that go(la.) =1 l= kz.

Then, f(D, (x, +x,)) =f (D, x, + D, x,),V f & V". This yields, D, (x +x,) =D, x, + D, x,.

By appealing to the same mechanism, we can show that D, (ax) = aD, (x) for any scalar a. So D, is linear.
Next, to show that D, is an a- derivation.

D, (x,ax,)®1, =D (xlax2® 1) (x,-x, V)
=p[x,®1,)@8)x,®1,)]

=D x,®1)) @®a) x,81 ) +(x & 1) (@®a’) D x,®1,)
(because D is an a@®a'-derivation)

=D, x,®1,)@®a) (x,® 1)+ (x,®1)(@a®a) (D x,®1,)
=Dx)ax,® 1 ,+xaDx,)®1,= [ (Dx)ax,+x a(Dgx,) ]® 1,

So,D, (x,ax,)=(D x ) ax,+x,a (D, x,). Therefore, D, is ana- derivation. The rest of the results are routine.
3. THENORMOFD

We now shift our attention to study the possibility of the result. | D] =1 D, §+§i D, |l. when D.
D, and D, are related as in Theorem 2.1.
THEOREM 3.1. If D, D1 and D2 are related as in Theorem 2.1, then
IDI<IDJ + ID, 1 <21D]I.
PROOF. Foreach ug(V,I')® . (V. T") with jul =1 andforeache>0, 3 a(finite) representation

u=2|xi®yisuchthat lul +te>Z1| x iyl

Now, [IDI| =sup {4 Dul, sl =1}
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=suup{|2|[D| x,®y, +x,®D,y, ]lp:|u|p=1 }
ssuup{?ﬂl D x®yL+lIx® Dzyil,,]ilulfl }
=sup{Z0ID,HEy 1+ Dy ] e =1}
<sup{Z0ID X 10y 141 % 11D, ] Py, 0]: =1}
< (|D||+|D2|)suup{]+s:||u|p=1}

= (1D, 1+1D, 1) (I+e)
Since € was arbitrary, it follows that | D < D { +||D,|| . (€N}
Next, let x¢ V be such that || x||= 1. Then || x/k, ® la,ll =|| x/k, || la’" =1

Now, |IDj=sup {iiDul,:luil,=1}

21D (¥, ®1,) Il ,=1ID, (xk,) @ 11| ,(Since D, (1,,)=0) = D,x |

Thus, || D, x || <|| D || for every x & V with || x || = 1. This gives || D, || <|| D || . Similarly, we can prove that
ID, || <|I D . Hence, we have || D, || +|| D, || <2 | D || - (3.2)
The inequalilies ( 3.1) ard ( 3.2) together imply ||D||<|[|D, ||+ D,[|<2(|D|. Q.ED.

Our next question is - can one improve the above result - ? We illustrate the possibility with the help
of examples :

Let V be the set of 2 x 3 rectangular matrices and I be the set of all 3 x 2 rectangular matrices with
real (or complex) entries. Then V and I' are Banach spaces under usual matrix addition, scalar multiplica-
tion, and the norm defined by || A ||, =max | a |, where A =(a,). Then (V,T")isa I'-Banach algebra
Now the following result is true : H

THEOREM 3.2, For a fixed a € T, each a- derivation on V is inner

Since o -derivations on a finite dimensional I'-Banach algebra are all inner, the result follows
immediately, see [10] .

We show below with an exampe in the I'- Banach algebra of 2 x 3 rectangular matrices that the
equality ID{[={D, | +]ID,| holds.

AN EXAMPLE 3.1.

| 0
Let =( 1 0) be a fixed element in T, and let D,  and D, A be two o derivations on V
-0

implemented by A and B, respectively, where A = ((: g 2 ) and B, =(g g 32)

Now  ||A,ll=2and||B,[|=3.and D, (A)=AgA — AcA, YAe V.
Then || D, A< 2 [[A/llllallllAll =2][A Il [[A]l, because ||| =1.
Hence, ||D, ||<2]|A,||=22=4 Next,supposethat X = (83 i ) Then||X,lI=1.



366 T. K. DUTTA, H. K. NATH AND R. C. KALITA

Also || A@X - X aA ||= ||(° 00 ) | =4 Hence|D,_||=4
00 4

Similarly we can show that || D, ||=6. So || D _||+[ID, [|=4+6=10.

If D is the derivation defined by the relation as in Theorem 3.1, then we always have

I DI<ID, Il +IDyll=10 . (ER))

100

Next, consider the element u = ¢, ® e,, where e = 000

. Then || u, ||F= 1.
Now, || D||>|| Dy, Hp
=||D,, ¢, @ ¢, +¢ @D, ¢ ||p

2D, ¢ @e, +e ®D,e |,

(because the projective norm is always greater than or equal to the weak norm)

=SUP{ | f(D,e)g(eHf(e) g(D, e )l fgeV* [fll=|lgl=1 } - (32

Again D e =Aae — eaA

002 10 100 100\ £10\ 002
- 10 — 10
00-2J \.10/ \ 000¢ 000/ \10/ \00-2
(-400 )
- 200
=Bae, — e aB,
003 10 100 100\ £10\ 70 03
= 10 _ 10
00-3)\10/\ 000 000/ \10/\o00-3
(—600)
= 300

We know that if we define
f(e)=1ifi=jand=0ifi#j then {f, f, f f, f, f, }isabasisfor V*

4
In (3.2) put =g = f . Then we find that || D || > 10. 33)
The inequalities (3.1) and (3.3) combinedly give || D || = 10. Hence || D || =|| D, || + D
ANOTHER EXAMPLE 3.2.

Next we wish to illustrate that the result in Theorem 3 1 cannot be improved in general. If we assume

1

|

VandT" represent the same set of all 2 x 2 real matrices, then ( V, I') is a particular I' - Banach

algebra with the usual operations. The ordinary identity matrix I =( (l) (l) ) is the identity of ( V, T ) under
multiplication.



a-DERIVATIONS AND THEIR NORMS IN TENSOR PRODUCTS 367
Y _f£ 01 _f00 _f 00 _ .
If e —(0 g ) ez—(OO ) e’—((l)O ) e‘—( 0 l),then p= {e,, €, € € } is the standard
basis for (V, ') . For a simple example, let D, and D, be derivations on (V,T") implemented by the

matrices A 2(3 ? ) and B = (g 'Z) respectively. Then the matrix representations of D, and D,

with respect to the basis  are respectively

0030 00-70
(D], 3103 and [D, ],=f§ 72 0 -7
0 0-10 00 -2 0
0 0-30 00 7 0

So,||D,[[=3and|| D, || =7. Again,y = {e ®e | i,j=1,2,3,4 } isabasis for (V.[')® (V.I) and
the matrix representation of D with respect to the basis y is

r_O 0-70

_
000 030000000

720-7 000003000000
0020000000 300000
0070000000 030000
3000 10-7 000 003000
0-300730-700 000 300

0 0-3000-1 000 00O O30

[D],= 0003007100 000 003
0000000 0-10-7002000
0000000071 070000
0000000 O0O0O0-3002000
0000000 O0O0O0 7-1 0000
0000000 0-300002070
0000000 O00O0-3 007 2 0-7
0000O0O0O0OOO-3000-20

| 0000000 000 0300 70]

Hence || D || = 7. Thus the strict inequality || D || < || D,|| + |ID, | <2 || D|| holds.
4. THE SPECTRUM OFD

We next devote to studying the validity of the result sp (D) =sp (D, ) + sp (D, ). Recall that sp (D))
consists of all scalars A, such that D, - A 1, is singular. Analogous definitions apply to sp ( D, ) and sp ( D)
Further, for the singularity and invertibility of a rectangular matrix, see . Joshi [11].

THEOREM 4.1. The derivations D, D, and D, are defined as in Theorem 2.1. Then

sp(D,)+sp(D,) csp (D)

PROOF. LetA &sp(D,)andA, € sp(D,).
= D, - A1 and D, - A, L, are singular
= 3 nonzero vectors x ¢V and y ¢V such that (D, -~ A I, )x =oand (D,- A4,L)y=0
Now, x ®y, is a non-zero elementin (V,[') ® (V,T").
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Again, [D- (A, +2) 1] (x,®Y,) =D (x, ®y) — (4, +1,)) (x,®Y,)
=D,x,®Y, +X,®D,y,— (4,+1,)x®Y,
=D, -4,1)x,®y,+x,®([D,-4,L)y, =0

So,D - (4,+4,) Iis singular and hence A +4, sp( D). Thus, weobtainsp (D,) +sp (D,) S sp(D). QED
REMARK 4.1. (i) We conjecture that the above result cannot be improved in general.

(i) However, the equality holds in finite dimensional I'- Banach algebras. For, if dim ( V, T’ ) = m, dim

(V.I'")=n, then dim ((V,F)®p (V',T'))=mn. So,sp(D,),sp(D,)and sp(D) have m,nand mn

eigenvalues respectively. Again, sp (D,) + sp (D,) gives mn values which are precisely the eigenvalues of D.

Further, we have the following illuminating result.

THEOREM 4.2. Asuusal, let D , D, and D be derivations connected by the relation as in Theorem
2.1G). If(V,T ) and (V,'T") are finite dimensional Gamma-Banach algebras, D, and D, are implemented
by.r € Vand s &V respectively, then

sp(D)={a=A-u|A,uesp(r)},
sp(D,)={b=A-u'|\', u'esp(s)}

and sp(D)={a+blaesp(D,).besp(D,)}
PROOF. The first two results will follow from Propostion 9,§18, Ch2 in [10], and the last result
will follow from Remark 4.1 (ii). QED.
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