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ABSTRACT. LetS bearing with 1, C the center of S, G a finite automorphism group of S of order n
invertible in S, and SC the subning of elements of S fixed under each element in G. It is shown that the
skew group ring SxG is a G'-Galois extension of (SxG)T' that is a projective separable CG-algebra where
/G'is the inner automorphism group of S*G induced by G if and only if S is a G-Galois extension of SG
that is a projective separable CG-algebra. Moreover, properties of the separable subalgebras of a
G-Galois H-separable extension S of SG are given when SO is a projective separable CG-algebra.
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1. INTRODUCTION

DeMeyer [1] and Kanzaki [2] studied central Galois algebras and Galois extensions whose center is a
Galois algebra with Galois group induced by and isomorphic with the group of the extension. These two
types of Galois extensions were recently generalized to a bigger class of Galois Azumaya extensions [3]
where S is called a G-Galois Azumaya extension of SG if S is a G-Galois extension of SG that is an
Azumaya CG-algebra where C is the center of S and SG 1s the subring of elements fixed under each
element of G. Sugano [4] investigated a G-Galois H-separable extension of SG, and recently, Szeto [5]
proved that a G-Galois H-separable extension S of SC that is a projective separable CG-algebra if and only
If S is a CG-Azumaya algebra. We call such an S a GHS-extension. It will be shown that the skew group
ring SxG isa G'HS-extension if and only if S is a G-Galois extension of SC that is a projective separable
CG-algebra, where G'is the inner automorphism group of S*G induced by G. Moreover, properties of
some separable subalgebras of a GHS-extension are also given.

2. PRELIMINARIES
Throughout, S is a ring with 1, G a finite automorphism group of S of order n invertible 1n S, C the

center of S, and SG the subring of elements fixed under each element in G. S 1s called a separable
extension of a subring T if there exist {a;, bjin S /i =1, 2, ..., m} for some integer m such that 3a;b; = 1

and 3sa;®b; = Ya;®b;s for each s in S where ® 1s over T. We call {a;, b,} a separable system for S. S
is called an H-separable extension of T 1f S®-S is isomorphic with a direct summand of a finite direct sum
of S as a bimodule over S. It is known that an H-separable extension 1s a separable extension and an
Azumaya algebra is an H-separable extension. S is called a G-Galois extension of SG, if there exist

{¢j, d;/1=1,2,...,k} in S for some integer k such that Sc;d; = 1 and 3c,g(d;) =Oforeachg= 1in G.
We call ®{c;, d;} a G-Galois system for S.
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3. SKEW GROUP RINGS

In this section, we shall show that S*G is a G'HS-extension if and only if S is a G-Galois
extensionof SG that is a projective separable CG-algebra, and give some properties of the separable
subalgebras of an G'HS-extension skew group ring.

THEOREM 3.1. By keeping the notations of section 2, S*G is a G'HS-extension if and only if S
is a G-Galois extension of SO that is a projective separable CG-algebra, where G' is the inner
automorphism group of S*G induced by G.

PROOF. Let S be a G-Galois extension of SG that is a projective separable CG-algebra. Noting that
S is a subring of S*G, we have that S*G is also a G'-Galois extension of (S*G)C' with a same Galots
system as S where G' is the inner automorphism group of S*G induced by G such that the restriction of
G'to S1s G. Hence SxG is an H-separable extension of (S*G)G' ([4], Corollary 3). Moreover, since n is
aunitin S, S*G is a separable extension of S. But S*G 1s a free module over S and S is a G-Galois
extension of SG that is a projective separable CG-algebra by hypothesis, so S*G is a projective separable
CG-al gebra by the transitivity of projective separable extensions. Since the order of G'is n, it is easy to
see that (S*G)G' is a direct summand of S*G as a two sided (S*G)G'-module. Noting that S*G is finitely
generated and projective module as a right (S*G)G'-module or a left module, we have that (S*G)C'is a
projective separable CG-algebra by the same argument as given in the proof of Lemma 2 in [1]. This
completes the sufficiency.

For the necessity, S*G is a projective separable CG-algebra by the transitivity of projective separable
extensions because S*G is a G'-Galois extension of (S*G)G' that is a projective separable algebra of CG.
Hence S*G is an Azumaya algebra of its center Z. But S is a free module over Sand nis a unitin S, s0 S
is a finitely generated and projective left S*G-module by the proof of Proposition 2.3 in [6] where gs =
g(s) foreach s 1n S and g in G. Thus S is a finitely generated and projective Z-module by the transitivity
of finitely generated and projective modules. Noting that 1 is in CG and that CG is contained in Z, we have
that S is a faithful Z-module. Thus S is a progenerator over Z. Since S*G 1s an Azumaya Z-algebra, S 1s
a progenerator over SxG. Therefore, S is a G-Galois extension of SG. Moreover, since S is a direct
summand of S*G as a CG-module and S*G is a finitely generated and projective CG-module, S is also a
finitely generated and projective CG-module. Now n is a unit in S, so SG is a SG-direct summand of S.

This implies that SG is a finitely generated and projective CG-module. So, it suffices to show that SGisa
separable CG-algebra. In fact, since S is a progenerator over CO (for 1 is in C8): Hom (S.S) is an

Azumaya CG-algebra. But SC =~ Homg,(S,S) = the commutator of S*G in Hom(S.S), so SGisa
separable CG-algebra (for so is S*G) by the commutant theorem for Azumaya algebras ([6], Theorem

4.3).
Next we give some properties of the separable subalgebras of S*G.

COROLLARY 3.2. If S*G is a G'HS-extension, then, for any subgroup K of G, S*K isa
K'-Galois extension of (S*K)K' that is a separable CG-algebra where K' 1s the inner automorphism group
of S*K induced by K.

PROOF. By Theorem 3.1, S is a G-Galois extension of SO that is a projective CG-algebra, so S is
a K-Galois extension of SK. Hence S*K is a K'-Galors of (S*K)K'. Noting that the order of K' is a unit
n S, we have that (SxK)X' is a direct summand of S*K as a (S*K)X'-module. But S*K is a projective
separable CG-algebra, so (SxK)K' is a separable CC-algebra by the same argument as given in the proof of

Lemma 21n [1].
Let Vg(T) be the commutator subring of the subring T 1n S, and Z the center of SxG. We give an

expression of the commutator subring of (S*G)K' in S*G.
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THEOREM 3.3. If SxG is a G'HS-extension, then (1) for any subgroup K fo G, Vg,;((S*G)X)

=ZK, and (2) ZK is an Azumaya algebra over its center D such that D = DK'.
PROOF. (1) By Theorem 3.1, S*G is a separable CG-algebra, so S*G is an Azumaya Z-algebra.

Since nis a unitin S, the order of K is a unitin S; and so ZK is a separable Z-algebra contained in S*G.
Noting that Vg, ~(ZK) = (S*G)K', we have that (S*G)K' is a separable Z-subalgebra of S*G such that ZK

=Vg ,G((S*G)K') by the commutant theorem for Azumaya algebras ([6], Theorem 4.3).

(2) Since S*G is a separable CG-algebra, Z is a separable CG-algebra. Hence ZK is a separable
CG-algebra (for the order of K is a unit in Z). Thus ZK 1s an Azumaya D-algebra. It remains to show that
D=DK' Clearly, DX'C D. Conversely, let d be an element in D. Then gd = dg for each g in K, so
gdg-1 = d for each g in K. Hence d is in DK',

The follwoing consequences are immediate.

COROLLARY 3.4. Let S*G be an G'HS-extension. If K is an abelian subgroup of G, then
(5*G)K' isan Azumaya ZK-algebra.

PROOF. By the proof of Corollary 3.3, (S*G)K' and ZK are separable subalgebras of the Azumaya
Z-algebra S*G such that Vg,5(ZK) = (S*G)K' and V,5((S*G)K') = ZK, so ZK is contained in the center
of (S*G)K' and the center of (S*G)K' is contained in ZK. Thus ZK is the center of (S*G)K'.

COROLLARY 3.5. Let S*G be a G'HS-extension. Then (1) if (S*G)K' is a commutative ring,
then ZK is an Azumaya (S*G)K'-algebra, and (2) if (S*G)K and ZK are commutative, then ZK is a
splitting ring for the Azumaya Z-algebra S*G.

PROOF. (1) Itisimmediate by the same argument of Corollary 3.4-(1). (2) Since (S*G)K' and
ZK are separable subalgebras of the Azumaya Z-algebra S*G such that V S*G((SmG)K') =ZK and

Vs.(ZK) = (8*G)K', (5+G)K' = ZK (for (S*G)K' and ZK are commutative) such that Vg,;(ZK) = ZK.
Hence ZK is a maximal commutative separable subalgebra of S*G. Thus ZK is a splitting ring for the
Azumaya algebra S*G ([6], Theorem 5.5).

4. SEPARABLE ALGEBRAS

In this section, we shall give a property of a separable subalgebra of any GHS-extension similar to
Theorem 3.3. Let T be a subalgebra of S over CG- The commutator subring of T in S is denoted by T".

THEOREM 4.1. Let S be a GHS-extension and T a separable CG-subalgebra of S, and
K={ginG/g(t)=tforeacht in T}. Then T'is invariant under K and an Azumaya DK"-algebra, where
D is the center of T' and K" is the restriction of K to T".

PROOF. Since tt'=t'tforeach tin T and t' in T, tg(t") = g(t)t for each g in K. Hence T'1s
invariant under K.

Next, since S is a GHS-extension, VS(VS(SG)) = SG ([4], Proposition 4-1). Hence C = Vs(S)C
Vg(Vg(S9)) = SC. This implies C = CC. Noting that S is a separable CG-algebra (for S is a GHS-
extension), we have that S is an Azumaya CG-algebra. But T is a separable subalgebra of S, so T" 1s also
a separable subalgebra of S such that Vg(T") =T by the commutant theorem for Azumaya algebras ([6],
Theorem 4.3). Let D be the center of T'. Then D C V(T") = T C SK. Thus D = DK" where K" 1s the
restriction of K to T'. The proof is complete.

COROLLARY 4.2. LetS be a GHS-extension, T a separable CG-algebra of S, and N =
{gin G/ g(t') =t for each t' in Vg(T)}. Then T is invariant under N and an Azumaya EN"-algebra ,
where E is the center of T and N" is the restriction of N to T.

PROOF. By the proof of Theorem 4.1, T and T' (= Vg(T)) are separable subalgebras of the
Azumaya CG-algebra S such that T = V¢(T"), so the corollary is immediate by Theorem 4.1.

By Theorem 3.1 in [5], Corollary 4.2 implies the following consequence.

COROLLARY 4.3. By keeping the notations and hypotheses of Corollary 4.2, T 1s a
N"HS-extension.
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We conclude the paper with two examples: (1) S isa G-Galois extension of SG that is a projective
separable CG-algebra, but not an H-separable extension of SC, and (2) S is a GHS-extension.

Example 1. Let Q be the rational field, Q[v2] the G-Galois extension of Q with Galois group
G = {1, g} where g(v2) = -v2 and S = My(Q[v2]), the matrix ring of order 2 over Q[v2].

Let G' = {1, g'} where g'([aij]) = [g(a.ij] forall [aiJ] inS. Then

(1) Sisa G'-Galois extension of SG',
@ sG'= M»5(Q), the matrix ring of order 2 over Q,

(3) sCG'isa projective separable Q-algebra,

(4) the center C of S is Q[v2] and CC = Q, and

(5) S is not an H-separable extension of SG' because C = CG.

Example 2. Let S and G' be given by Example 1. Then S is a G'-Galois extension of SC' thatis a
projective separable CG-algebra by properties (1) through (4) in Example 1. Then the skew group ring
S*G'is a G'HS-extension by Theorem 3.1.
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