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ABSTRACT. The Neumann problem for the dissipative Helmholtz equation in a connected

plane region bounded by closed and open curves is studied. The existence of classical solution is

proved by potential theory. The problem is reduced to the Fredholm equation of the second kind,
which is uniquely solvable. Our approach holds for both internal and external domains.
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1. INTRODUCTION

The boundary value problems in domains bounded by closed and open curves were not treated

in the theory of 2-D PDEs before. Even in the case of Laplace and Helmholtz equations the

problems in domains bounded by closed curves [1-2], [5-8] and problems in the exterior of open

arcs [5], [9-11] were treated separately, because different methods were used in their analysis.

Previously the Neumann problem in the exterior of an open arc was reduced to the hypersingular

integral equation [9-10] or to the infinite algebraic system of equations [11], while the Neumann

problem in domains bounded by closed curves was reduced to the Fredholm equation of the second

kind [1], [6-8]. The combination of these methods in case of domains bounded by closed and open

curves leads to the integral equation, which is algebraic or hypersingular on open curves and t

is an equation of the second kind with compact integral operators on the closed curves. The

integral equation on the whole boundary is too complicated and the general theory of similar

equations are not constructed currently. The approach suggested in the present paper enables to

reduce the Neumann problem in domains bounded by closed and open curves to the Fredholm

integral equation on the whole boundary with the help of the nonclassical angular potential. Since

the boundary integral equation is Fredholm, the solvability theorem follows from the uniqueness

theorem, which is ensured for the Neumann problem in the case of the dissipative Helmholtz

equation This approach is based on [3-4], where the problems in the exterior of open curves were

reduced to the Fredholm integral equations using the angular potential.

2. FORMULATION OF THE PROBLEM

By a simple open curve we mean a non-closed smooth arc of finite length without self-

intersections [5]
In the plane x (xl,x2) 6 R we consider the multiply connected domain bounded by simple
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open curves r,..., r, c-,, (0, ], n simple closed curves r,...,r, c-,0, o that the

curves do not have points in common. We will consider both the case of an external domain and

the case of an internal domain, when the curve F encloses all other. We put

N Nr= Urn, r= Urn, r=rur.
The connected domain bonded by F will be called D. We assume that each curve F is para-

metricized by the arc lenh s

r (. () ((),()), e [,b]}, 1,...,N, k 1,2,
so that a < b} < < a, < b < a < b < < a < b and the domn D is to the right
when the parameter s increases on F. Therefore points x F and values of the parameter s are in

one-to-one correspondence except a, b, wch correspond to the same point x for n 1, N.
Below the sets of the intervals on the Os as

N N Nk

n=l n=l k=l n=l

will be denoted by F, F2 d F also.

w ut (r)= {y() y()e [,], y()= y() } d (r) c(r).
n=l

The tangent vector to r at the point z(s) we denote by

COS (8) X(8) sinG(8) X(8). Let , (siG(8)- cosG(8)) be a ormal vector to 8t x().
The rection of n is chosen such that it will coincide with the rection of T if n is rotated

anticlockwise through an angle of r/2.
We say, that the nction w(x) belongs to the smoothns class K if

) e (r) c(r),
2) vw e c(rrx), here X is a point-set, consisting of th end-points of r

N

n=l

3) in the neighborhood of any point x(d) X for some constants C > 0, e > -1 the inequality

holds

v c (d) (.)

wherexx(d) andd=a, ord=b, n=l,...N,
4) there exists a iform for all z(s) e r lit of (n,, V()) as

along the normal n.
REMARK. In the definition of the class K we consider F

Accorng to this definition, w(z) and Vw(z) may have a jump across rx.
Let us formulate the Neumann problem for the ssipative Helmholtz equation in the domn

PROBLEM U. To find a fction w(x) of the class K which satisfies the Helmholtz equation

,, () + ,,(z) + Z(z) 0, e r, Z cot, Z > 0, (2.2)

and the boundary condition
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If D is an external domain, then we add the following condition at infinity

(2.2c)

All conditions of the problem U must be satisfied in the classical sense. By Ow/On on F we

mean the limit ensured in the point 4) of the definition of the smoothness class K. The normal

derivative 0w/0nz has to be continuous across FI\X and has to take given values on FI\X. At
the same time w(x) may have a jump across FI\X.

On the basis of the energy equalities and the technique of equidistant curves [6], we can easily

prove the following assertion.

THEOREM 1. If F 6 C’, A 6 (0, 1], F 6 C2’0, then the problem U has at most one

solution.

The theorem holds for both internal and external domain 7).

3. INTEGRAL EQUATIONS AT THE BOUNDARY

Below we assume that f(s) from (2.2b) is an arbitrary function from the Banach space

c,(r) c(r), e (0, }.
If B1 (F), B2(F2) are Banach spaces of functions given on F and F2, then for functions given

on F we introduce the Banach space B(F) gl B2(F) with the norm [[’l[l(r)nB(r2)= [l’l[(r)+

Nk

BY/...drwemeanaf,...da.rk n=l

We consider the angular potential from [3], [4] for the equation (2.2a) on

i/w[,u](x) (r)V(x,a)da. (3.1)
F

The kernel V(x, r) is defined on the each curve F, n 1, N by the formula

v(, ) /o,( (Z I y()l) d, = e [, b]

where T/(0)(z) is the Hankel function of the first kind

(01)(z) v/exp(iz-ir/4) ? ( it

rv exp(-t)t-/ 1 + -z
0

dr,

() ((),()), I ()1 v/(-()) + ( ()).

Below we suppose that/(a) belongs to the Sanach space C(F1), w 6 (0,1], q e [0,1) and

satisfies the following additional conditions

/ l(a) da O, n l, N. (3.2)

We say, that/(s) e C(F) if

gl

C’(r
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where C’(F1) is a Holder space with the index and

r=l IIcO,w(F1)

As shown in [3], [4] for such #(a) the angular potential wl[#](x) belongs to the class K. In
particular, the inequality (2.1) holds with e -q, if q (0, 1). Moreover, integrating wl[](x) by

parts and using (3.2) we express the angular potential in terms of a double layer potential

f p(a)---) (Z lz y(a)l) da, (3.3)[]() -with the density

p(c) ] #(f)d’, a e [al, b], n 1, N1. (3.4)

Consequently, wl[#](x) satisfies both equation (2.2a) outside F and the conditions at infinity

(2.2c).
Let us construct a solution of the problem U This solution can be obtained with the help of

potential theory for the Helmholtz equation (2.2a). We seek a solution of the problem in the form
of the anlar pontial on F and the single-layer potential on F

w](x) w[](x) + w[](x) (3.5)

where w[](x)is ven by (3.1), (3.3) and

]() f(a)) (Z I y(a)l)d.
F2

We will sk (s) from the Bach space c(r)(r=), e (0, ], e [0, ) with the norm

]}’]lc(r)oc0(r=) l]’llv(r) + H’lle0(r=) Besides, (s) must satisfy conditions (3.2).
It follows from the properti of potentials [1], [3-4], [6], that for such p(s) the ction (3.5)

belongs to the cls K and satisfies all contions of the problem U except the boundary contion

(2.2b). In the ce of the extern domain the fction (3.5) satisfies the contion at inity

(.).
To satisfy the bodary contion we pu (3.5) in (2.2b), use the lit form for the anlar

potential from [3] d aive the ine equation for the density (s)

r i0((), u()) r 0
l u() I()- ()1 + _l u() (()’) e()u()+2
rx r

( I()- U()l) =/(), V, (.6)+ fu()

where 6(s) 0 if and g(s) if s ,
(z,) h(x (()) d(, [a, b], n , 2,

By 0(z,) we denote the angle between the vector and the Nrection of the normal n. The

angle 0(, ) is taken to be positive if it is meured anticlockwise from n and negative if it is

measured clockwise om n. Besides, 0(z, ) is continuous in z, F if z .
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Thus, if/(s) is a solution of equations (3.2), (3.6) from the space

C(F1) N C(F2), w e (0,1], q e [0,1), then the potential (3.5) satisfies all conditions of the
problem U. The following theorem holds.

THEOREM 2. /fr e c2,, r e c,, f(s) e c,(r)N co(r), A e (0,1], equation (S.6)
has a solution #(s) from the Banach space C(F) f C(F-), w 6 (0, 1], q 6 [0, 1) and condztions

(3.2) hold, then the function (3.5) is a solution of the problem U
Below we look for/z(s) in the Banach space C(F) q C(F).
If s 6 F-, then (3.6) is an equation of the second kind with compact integral operators. If

s 6 F, then (3.6) is a singular integral equation [5].
Our further treatment will be aimed to the proof of the solvability of the system (3.2), (3.6)

in the Sanach space C[(F1) q C(F). Moreover, we reduce the system (3.2), (3.6) to a Fredholm
equation of the second kind, which can be easily computed by classical methods.

Equation (3.6) on F2 we rewrite in the form

+ / I(a)A_(s, a)da -2f(s), s 6 F, (3.7)
F

where

__ov ((),)+A2(s,a) (1-6(a)) On 2 w’0n’ ( I()

and V(x, q) is the kernel of the anlar potential (3.1).
We note A(s,a) (F2 x F), because F: C’.

It can be easily proved that

sin0(x(s), y(a)) e C’(r x r)() ()l

(see [3], [4] for details). Therefore we can rewrite (3.6) on F in the form

/ d /():s
+ .()Y(.)d -2/(). e r

F F

where

1--6(cr)) [ ( sinO(x(s)’y(a))lx(s s
Vo ((s), a)

()io()on,0 (Z I() ()l) } e c.o(r r).

P0=Aif0<A<l andp0=l-e0foranye06(0,1) ifA=l.

(3.8)

4. THE FREDHOLM INTEGRAL EQUATION
AND THE SOLUTION OF THE PROBLEM

Inverting the singular integral operator in (3.8) we arrive at the following integral equation of

the second kind [5]:

1 N,-1

F1#(a)Ao(s, a)da + Q(s) G"s (I)0(s), s 6 (4.1)"() + O() r =o Q()

where Go, GNI-1 are arbitrary constants and

2Q(a)f(a)daAo(s, a) _lr / Y( a)Q (I)0(s) lr / a s
F F



214 P.A. KRUTITSKII

To derive equations for Go, GN-I we substitute #(s) from (4.1) in the conditions (3.2), then

we obtain
N

/tt(a)l,(a)da + Sn,G, Hn, n 1,...,Nx (4.)
F m--O

where

r r

B,, -/Q(s)s’ds.
r

(4.3)

By B we denote the N1 x N1 matrix with the elements B,, from (4.3). As shown in [4], the

matrix B is invertible. The elements of the inverse matrix will be called (B-1),. Inverting the

matrix B in (4.2) we express the constants Go, GN- in terms of tt(s)

G. (B-I).. H. (a)l(a)da

We substitute G, in (4.1) and obtain the integral equation for #(s) on F

1/(s) + tt(a)A (s, a)da qli’s) O1 (s), s e F, (4.4)

where
N1 N1

A (s, a) Ao(s, a) _, s
n--0 rn=l

N N1
Ol(s) Po(S) s (B-I),,H,

n=O

It can be shown using the properties of singular integrals [2], [5], that 0(s), A0(s, a) are Holder

functions if s E I’1, o E 1". Therefore, O(s), A(s, a) are also Holder functions if s Fx, a F.
Consequently, any solution of (4.4) belongs to C’/(r1) and below we look for (s) on ’1 in this

space.

We put Q(s) (1 (s)) (s) + 5(s), s e F.
Instead of (s) 6’1/(r)c6(r) we introduce the new unknown function .(s) (s)(s)

C’(I"1) C C(1’) and rewrite (:3.7), (4.4) in the form of one equation

#,(s) + f #,(r)Q-x(a)A(s,a)da (s), s e F, (4.5)

where

A(s,r) (1 -6(s))A(s,a)+8(s)A(s,a), (s)= (1- 8(s)) @x(s) 26(s)y(s).

Thus, the system of equations (3.2), (3.6) for tz(s) has been reduced to the equation (4 5) for

the function #,(s). It is clear from our consideration that any solution of (4.5) gives a solution of

system (3.2), (3.6).
As noted above, l(s) and A(s,a) are Holder functions if s 6 F, cr 6 F. More precisely (see

[4], [5]), (s) e C’(F1), p min{1/2, A} and Al(S,a) belongs to C’(Fl) in s uniformly with

respect to a E F. We arrive at the following assertion.
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LEMMA. /fF C2’a, A (0,1], F C2,, (s) co(r=), p= min(A, 1/2},
and l.(s) from C(F) satisfies the equation (,.5) then #.(s) C’(F1) N C(r2).

The condition (s) C(rx) N C(F2) holds if f(s) C,(F1) N C(F=).
Hence below we will seek/.(s) from C(F).
Since A(s, a) C(F x F), the integral operator from (4.5):

Ap. f tz.(a)Q-(a)A(s,a)da
F

is a compact operator mapping C(F) into itself. Therefore, (4.5) is a Fredholm equation of the

second kind in the Banach space C(F).
Let us show that homogeneous equation (4.5) has only a trivial solution. Then, according to

Fredholm’s theorems, the inhomogeneous equation (4.5) has a unique solution for any right-hand
side. We will prove this by a contradiction. Let/z.(s) C(F) be a non-trivial solution of the ho-

mogeneous equation (4.5). According to the lemma .(s) C’(F1) N C(F), p min{A, 1/2}.
Therefore the function #(s) #.(s)Q-(s) C/=(F) N C(F2) converts the homogeneous equa-
tions (3.7), (4.4) into identities. Using the homogeneous identity (4.4) we check, that/(s) satisfies

conditions (3.2). Besides, acting on the homogeneous identity (4.4) with a singular operator with

the kernel (s- t) -x we find that #(s) satisfies the homogeneous equation (3.8). Consequently,

#(s) satisfies the homogeneous equation (3.6). On the basis of theorem 2, w[#](x) is a solution

of the homogeneous problem U. According to theorem 1 w[/l(x) 0, x D\Fx. Using the

limit formulas for tangent derivatives of an angular potential [3], we obtain

0 0 0
lira wu ](x)- lim w[/](x) #(s) --0, s F

-x(s)e(rl)+ x-,(s)e(rl)- OT
By (F)+ we denote the side of F which is on the left as a parameter s increases and by (F) we

denote the other side.

Hence, w[#](x) w[#](x) 0, x , and /z(s) satisfies the following homogeneous

equation

" if o, 0 .,O) ( lx(s y(a)l da 0, sF. (4.6)-_u() + u o--:no
F

The Fredholm equation (4.6) is well-known in classical mathematical physics [1], [6]. We arrive

at (4.6) when solving the Neumann problem for the Helmholtz equation. (2.2a) in the domain :D by
the single layer potential. It is well-known [1], that the equation (4.6) has only the trivial solution

/(s) 0 in C(F). This is true for both internal and external domain :D.

Consequently, if s F, then /z(s) _= 0, /z.(s) I(s)Q-(s) =-- 0 and we arrive at the

contradiction to the assumption that p.(s) is a non-trivial solution of the homogeneous equation

(4.5). Thus, the homogeneous Fredholm equation (4.5) has only a trivial solution in C(r). We

have proved the following theorem.

THEOREM 3. If F C2’, F C’, A (0,1], then (.5) is a redholm equation of the

second kind in the space C(F). Moreover, equation (,.5) has a unique solutwn #.(s) C(F) for
() c(r).
As a consequence of the theorem 3 and the lemma we obtain the corollary.

COROLLARY. /f F C’a, A (0, 1], F C’ and p(s) C’(F1) N C(F), where

p min{A, 1/2}, then the unzque solution of (.5) in C(F), ensured by theorem 3, belongs to

c0,(r) c0(r).
We recall that (s) belongs to the class of smoothness required in the corollary if f(s)

C,(F) N C(F2). As mentioned above, if #.(s) C’(F) C(F2) is a solution of (4.5), then
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,(s) ,.(s)Q-() e cz=(r)nc(r=) is a solution of system (3.2), (3.6). We obtain the following
statement.

THEOREM 4. If F E C’, F C-’, f(s) C’(F1)f C(F), A (0,1], then the
system of equations (3.2], (3.6) has a solution (s) e CT/=(F) N C(F), p min{1/2, A}, which
s ezpressed by the formula t(s) I.(s)Q-l(s), where p.(s) e C’P(F1) N C(F) is the unique
solution of the Fredholm equation (.5 in c(r’).

On the basis of the theorem 2 we arrive at the final result.
THEOREM 5. If F e C’, F e C2’, f(s) e C’(F)NC(F), A e (0,1}, then the

solution of the problem U exists and is given by (3.5), where #(s) is a solution of equations (3.),
(3.6) from C/2(F) n C(F2), p min{1/2, A} ensured by the theorem .

It can be checked directly that the solution of the problem U satisfies condition (2.1) with

-1/2. Explicit expressions for singularities of the solution gradient at the end-points of the
open curves can be easily obtained with the help of formulas presented in [4].
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