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ABSTRACT: A lineafized theory ofmagnetoatmospheric waves is developed where the restoring forces

are those of compressibility and magnetic pressure. An equation for resonance is derived. Reflection

and tunneling of upward propagating Alfvn waves in an ideal Magnetoatmosphere are considered. It

is shown that the magnetic field produces a reflecting nonabsorbing critical layer. Below the critical

layer, the solution of the problem can be written as a linear combination of an upward and a downward

propagating wave and above it the solution decays exponentially with the altitude. The location of the

critical layer and the magnitude of the reflection coefficient are determined and the conclusions are

discussed in cormeetion with the heating mechanism of the solar atmosphere.
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1 INTRODUCTION

The dynamics of the solar atmosphere is complicated by the fact that not only is it strongly stratified,

in both gas density and temperature, but it is also permeated by a non-uniform magnetic field. The

solar atmosphere is an example of a plasma that is both structured and stratified. More specifically,

the sun is a compressible plasma and able to support sound waves. The presence of a strong magnetic

field indicates that the solar atmosphere is an elastic medium. Thus, wave motions of various types will

occur and become a source of energy in the solar atmosphere.

In this paper a linearized theory of magnetoatmospheric waves, involving the combined restoring

forces due to compressibility and magnetic pressure, is developed for the case of a uniform horizontal

magnetic field. A general propagation equation is derived for adiabatic perturbations with arbitrary

vertical distribution ofAlfvtn and sound speeds. An exact analytical solution ofthe propagation equation

is obtained for the ease of an isothermal atmosphere permeated by a uniform horizontal magnetic field.

We examine the propagation of Alfvn waves in two distinct regions in the solar atmosphere, which is

taken to be an ideal one. It is shown that in the first region, where the strength of the magnetic field is

weak, the solution can be written as a linear combination of upward and downward propagating waves
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with equal wavelengths. In the first region the motion is approximately acoustic because the motion

is dominated by the restoring force of compressibility. In the second region, where the magnetic field

strength dominates the motion, the solution decays exponentially with altitude. The first and second

regions are connected by a critical layer in which the reflection takes place and the motion is influenced

greatly by the effect of the magnetic field. Also, the behavior of the solution, in both regions, indicates

that the tunneling is weak as the waves, ofall kinds, propagate between the two regions and the reflection

is very strong. We expect the motion, in both regions to continue in its prescribed form because there

is no physical mechanism for dissipation. The reflection coefficient, location of the transition region,

critical layer, and the conclusions are presented in connection with the heating mechanism of the solar

atmosphere.

Finally, in the formulation of the problem we will be able to introduce and justify the so-called

"magnetic energy condition" in an ideal Magnetoatmosphere as an upper boundary condition to ensure

a unique solution.

2 PROBLEM FORMULATION

We consider an ideal magnetoatmosphere which is inviscid and thermally non-conducting, and occu-

pies the upper half-space z > 0. It is assumed that the gas is under the influence of a uniform horizontal

magnetic field and that it has an infmite electrical conductivity. We investigate the problem of small

vertical oscillations about equilibrium.

Let the equilibrium pressure, density, magnetic field intensity and external potential be denoted by

Po(z), (z), B(z) and o(Z). Let P, p, B, and V be the perturbations in the pressure, density, magnetic

field intensity, external potential and velocity. The equations of ideal magnetohydrodynamics are those

of momentum, induction, isotropy, and continuity:

p [- + V.X;’V -XTp- Bx (7x B)- pX7/,, (2.1)

0B-- X7 x (V x B), (2.2)

+ V.V (Pp-") 0, (2.3)

[-+ V.V] p -pV V. ,2.4)

Here 7 denotes the ratio of the specific heats. These equations are linearized about a static equilibrium
defined by

VPo + Bo x (V x Bo) -Po’o. (2.5)

In this problem @o is considered to represent a uniform gravitational field. Thus, 7@o -g

(0,0,) and the last term in equations (2.1) and (2.5) is replaced by pog. In terms of the linear

Lagrangian displacement field (r,t), the velocity perturbation is defined by:

V __0 (2.6)0t’

and the’ equation of motion of ideal magnetohydrodynamic is obtained by integrating and eliminating

all perturbation quantifies except . As a result, we have

#o F (), (2.7)
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where the force operator F () is defined by

F () V (7 PoV- + . VPo) Bo (V R) R (V Bo) + V. (po) Vo, (2.8)

where

R-- V x ( x Bo). (2.9)

The linear Lagrangian displacement field is assumed to be of the form (x,y,z,t) and as an integral

superposition of harmonic terms, with and its first x derivative vanishing at infinity. As a result,

1 e-"’t (z, k) e’’’dk, (2.10)

where the wave number is assumed m be k (k, 0, 0). Consequently, the horizontal magnetic field

be written as

B, (B () ,B () O) (:2.11)

Using equation (2.10), equation (2.7) becomes

-pow2 F (0, k). (2.12)

Eliminating all variables except ,, we obtain the following differential equation:

d
A(z,w) +C(z,w)=O,

dz dz

where the coefficient A (z,w) and C (z,w) have the following form:

(2.13)

A (z,w)
poAllA12A13

(2.14)
A14AI5

where

C (z,w) po A12 A14A15 po zz A14A15

+ C, AI2 w2An ax + %
A13 2_ a2zk2 A14=td2 l[k2A11An ’ 17

etem a, d a ee x d y comnen of6n sed, wle denotes e eed of

sold.

3 SIMPLIFICATION OF THE PROBLEM AND BOUNDARY CONDITIONS

For this problem the atmosphere is assumed to be isothermal (co =c(z) constant) and permeated by

a uniform horizontal magnetic field B (B, 0, 0). The equilibrium pressure Po and constant temperature

To satisfy the gas law Po RTopo and the hydrostatic equation P (z) + gpo 0. Here, R denotes

the gas constant and the prime denotes differentiation with respect with respect to z. As a result, the

equilibrium pressure and density can be written as:

Po (z) Po (O)exp(-z/H) po (Z) po (O)exp (-z/H) (3.1)
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where H -P0 (z)/Po (z) trro is the density scale height. Consequently, the differential equation

(2.13) becomes

Z C2h;

where
n2

o (o) =o (o)’
denotes Alfvn speed at z O. Furthermore, we introduce the following dimensionless quantifies and

variables:

(z) W (x)exp-kz, z=z0exp(-),
z D2a O2o (0) Hw=, k=Hk, Zo=k2 a2, a" o’=--,

C

where the prime on z is eliminated for simplicity. Thus, the differential equation (3.2) becomes,

(3.3)

(3.4)

( )
w()
dx + [c (a + b + I) x]

dW (x) abW (x) O. (3.5)

It is clear that the differential equation (3.5) is a special case of the hypergeometric differential equation

a+b c 2k+l, ab a2+k+(7-1) k2
(3.6)

9’ 0"2
Boundary Conditions:

To complete the formulation of the problem, certain conditions must be imposed to ensure a unique

solution. If the atmosphere is viscous, an appropriate condition would be the dissipation condition,
which requires the finiteness of the rote of the energy dissipation in an infinite column of fluid of

unit cross-section. Since the dissipation function depends on the squares of the velocity gradients, this

implies

/o [w’12a <o. (3.7)

In our problem the atmosphere is not viscous, but the integral in (3.7) is prbportional to the magnetic

energy in an infinite column of fluid. This condition is a reasonable one to apply so long as there is no

energy radiation to infinity, which is true in our ease, and we shall call this condition "rnagnetie energy
condition." Thus we will require (3.7) even when the atmosphere is inviscid. A boundary condition is

also required at x 0, and we shall set

W (0) 1, (3.8)

by suitably normalizing W(x). It will be seen that the boundary conditions (3.7) and (3.8) will determine

a unique solution to within a multiplicative constant.

4 SOLUTION OF THE PROBLEM

In this section we investigate solutions of the following differential equation,

x (1 x) dWdx2(x) + [c (a + b + 1) x] dWd..._._(x) abW (x) O,

where

a+b=c=2k+l, ab=a2+k+(7-1) k2
,,/ 0.2,

(4.1)

(4.2)
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subject to the prescribed boundary conditions. Solving for the parameters a and b, we obtain

1 1
a-/k-r, b= /k+r,

where

(4.3)

1 k2 2 7- 1 k
r V’rl r2, r - + and r2 +

7

It is clear that the parameter r is a real number, for rl > r2, r 0 for r r2 and r iv/r2 rl for

r < r2.The differential equation (4.1) is a special case of the hypergeometric equation which has three

regular singular points at x 0, x and x oo. The intermediate regular singular point, x l,

corresponds to the existence of the critical layer, which has a great importance for understanding the

heating mechanism of the solar atmosphere. As a result, the differential equation (4. l) has two linearly

independent solutions which can be written in the following form for Ix[ < 1.

Wx (x) F (a, b; c; x), (4.4)

W2 (x) x-CF (a c + 1, b c + 1; 2 c; x), (4.5)

r () r ( + ) r ( + )f (a, b; c; x) F (a) F (b) ,=0 F (c + n) n-"[." (4.6)

Since k > 0, then 1 -c -2k < 0, and

x1-c= [Xo exp (-z)]X-c oo, as z oo. (4.7)

Thus, the solution of the differential equation (4.1) as defined by equation (4.5) will be eliminated by

the magnetic energy condition. Consequently, the general solution of the differential equation (4.1) is

W (x) AF (a, b; c; x) (4.8)

where A is an arbitrary constant and can be determined by the boundary condition (3.8). Using the

asymptotic behavior of F (a, b; c; x) for Ixl > and reintroducing the variable z, the solution of (4.4)
can be written as

W (z)= Cons. [[exp ( +k+ ir)z] + R exp ( +k-it)z],
where R denotes the reflection coefficient and defined by

(4.9)

n exp [i (o + og o)],

and

0 arg (R) arg
r () r (b ) r ( )
r ( ) r (b) r ( )

5 GENERAL DISCUSSION

The structured nature of the solar magnetic field means that magnetism is of greater importance in

some regions of the sun than in others. A simple guide to the relative importance of magnetic effects

is provided by the plasma beta, B, defined by

= Po _2 (__c)’ (5.1)
P, 7



386 H. Y. ALKAHBY AND M. A. MAHROUS

where P denotes the magnetic pressure. A low-3 plasma, such as the corona, is thus one for which

the Alfvtn speed greatly exeeds the sound speed, a >> c. Wave propagation, then, involves the two

speeds c and a. In fact, the sound speed exists and inter into a description of propagation speeds only

in the combination with AlfvCn speed. As a result, the wave speed W, is such, Ss < Ws < Fs, where

Fs and S are the fast and slow speeds and def’med by

F =c +a, S =c- +c-. (5.2)

Moreover, F, will be refered to as magnetoacoustic speed; it is super-sonic and super-Alfv6nic. By

contrast, S is both sub-sonic and sub-Alfv6nic.

It is easy to see that the maximum of the kinetic energy Max(K) o (1--)" As a result, when the

reflection coefficient/ --, -1, we have Max(K) oo. This occures when

0 + 2r log z0 --, 4- (2rt + 1) (5.3)

We call this equation, resonence equation.

From the above discussion and the asymptotic behavior of the solution, expressed in (4.9), we have

e following observations:

(A) It is clear that IRI 1. As a result, the magnetic field produces a nonabsorbing critical layer,

below it the solution can be written as a linear combination of an upward and a downward propagating

wave with the same wavelengths. Above the critical layer the solution decays exponentially with altitude.

Thus, the critical layer separates two distinct regions with different physical properties.

(B) In the critical layer the reflection and the wave modification take place. Since IRI 1, the

tunneling is very weak while the reflection is very strong. In this case the total energy of the wave is

divided equally between the incident and reflected waves.

(C) Since the Magnetoatmosphere is ideal, there is a physical mechanism for dissipation. Thus, we

expect the motion to continue in this form and become one of the main sources of energy in the solar

atmosphere.

(D) As a result of (B) and (C) we see that the heating process is an acoustic one below the critical

layer because the compressibility force dominates the oscillatory process. As we move from a region

of weak magnetic field to another one with a strong magnetic field, the heating process becomes

magnetoacoustic.
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