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ABSTRACT. Orthogonal wavelets on the Cantor dyadic group are identified with multiwavelets
on the real line consisting of piecewise fractal functions. A tree algorithm for analysis using these
wavelets is described. Multiwavelet systems with algorithms of similar structure include certain

orthogonal compactly supported multiwavelets in the linear double-knot spline space S1,2
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1. INTRODUCTION.
To study the construction of wavelets and to study abstract harmonic analysis, we consider

orthogonal wavelets on the locally compact Cantor dyadic group. In Lang [11], compactly sup-
ported wavelets are constructed on this group; the construction proceeds similar to that of Meyer
[16], Mallat [14] and Daubechies [2], via scaling filters. (See Holschneider [10] for general informa-
tion about wavelets on locally compact groups; other constructions of wavelets on groups include
Dahlke [1] and Lemarie [13].) The Cantor dyadic group may be ident!fied with the nonnegative
real numbers as a measure space; harmonic analysis on the Cantor dyadic group corresponds to

analysis using Walsh functions on the line. The wavelets constructed on the Cantor dyadic group
turn out to be certain lacunary Walsh series on the line.

Here, we will continue study of these wavelets; we will consider these wavelets as wavelets on
the real line. We will describe the form that the natural Mallat tree algorithm for these wavelets
takes when used to analyze functions on the line. From the structure of the algorithm, we find
that the Cantor dyadic group wavelets may be identified as multiwavelets on the line. In fact,
they are multiwavelets consisting of piecewise fractal functions, in the sense of Massopust [15]. It
is possible to develop their properties without reference to the Cantor dyadic group.

Other wavelet systems with a tree algorithm with the same structure include certain com-

pactly supported orthogonal multiwavelets in the linear double-knot spline space S1,2 described

in section 7 below; approximations with these multiwavelets take the form of piecewise linear, not

necessarily continuous functions.

2. THE CANTOR DYADIC GROUP.
We describe the locally compact Cantor dyadic group. This group, also known as the 2-series

local field, consists of the countably infinite weak direct product of the group of integers modulo
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2. We write

G Z/(2) where Z/(2)= {0,1}.

Thus if x 6 G then x (x,)_o where x, 6 {0,1} and where x, # 0 for only finitely many
_> 0. So we may identify x with the real number ’___o x,2’. The Cantor dyadic group is

thus identified with the nonnegative real numbers as a measure space (but not algebraically or
topologically).

Translation on the Cantor dyadic group is as usual; we will write Ty(x) x + y for x, y 6 G.
We consider a simple example. Let y (y,) where yo 1 and y, 0 for #- 0. So y corresponds
to the real number 1. Translation by this number corresponds to the function

f x+l if2k:x<2k+lforsomeintegerk_>0
T,(z) (2.1)x- 1 otherwise

when G is identified with [0, oo).
Dilation on the group G is given by p(x), x,-l. This corresponds exactly to the map

p(x) 2x when G is identified with [0, oo). We let pk(x) 2kx for k E Z.
The group characters of the Cantor dyadic group become Walsh functions when the group

is identified with the nonnegative reals. We describe the Walsh functions on the real line. First
we define the Rademacher functions rj for j E Z. We let to(x) 1 if2k _< x < 2k+l for
some integer k, and ro(x) -1 otherwise. We then define rj(x) ro(23x). Now consider a real
number y. We write y y,2’ where y, 6 {0, 1}. We then define the Walsh function W, by
Wy(x) 1-I,ez(r,(x))Y’; for each x there is only finitely many terms in the product different than
1. (This is the Paley denumeration of the Walsh functions.) For example, W3(x) ro(x)rl (x)
if x 6 [k-1/4, k+ 1/4) for some integer k and-1 otherwise. For a function f on G (or a function
on the line), we may define the Walsh transform .{(y) f f(x)W,(x)dx; this is the natural
analogue of the Fourier transform for the group G, but we will make no further reference to this
transform here.

See Taibleson [23], Edwards [4] and Hewitt [9] for more information about the harmonic
analysis on the Cantor dyadic group. Also see Golubov et al. [5] and Schipp et al. [20] concermng
Walsh series and transforms.

3. WAVELETS ON THE CANTOR DYADIC GROUP.
First we describe multiresolution analyses on the Cantor dyadic group. Let A be the subgroup

of the Cantor dyadic group corresponding to the nonnegative integers. We say that a sequence
(V) of closed subspaces of L2(G) is a multiresolution analysis if: V c V+I for all j 6 Z;
f 6 Vo == f o Tn 6 V0 for all n 6 A; f 6 V ==> f o p 6 V+I for all j 6 Z; CV {0} and
is dense in L2(G); and there is f 6 V0 whose translates by A form a Riesz basis of Vo.

We may then construct compactly supported, orthogonal wavelets on the Cantor dyadic
group. This may be done by following the method of Meyer, Mallat and Daubechies, using
conditions on scaling filters. We omit the details of this construction; see Lang [11] and [12]. If we
consider length-4 scaling filters (consisting of trigonometric polynomials of four Wish functions):
we obtain the following wavelets. Let 0 < a _< 1 and a + b2 1. Let (x) f(x/2) where

f 1/2110,1) (1 + aWl + abW3 + ab2W7 + ab3W5 +... ).

(Here 110,1) is the indicator function of [0, 1); it is 1 if x is in that set and 0 otherwise.) Then
is continuous (in the sense of G) and compactly supported, and the translate of by A are
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orthogonal. Also if Vo is the space spanned by the translates of , then V0 forms a multiresolution

analysis as above. The corresponding mother wavelet is the function

(x) 2ao(Tl(2x))- 2al(2x)+ 2a2(T3(2x))- 2a3(T2(2x)) (3.2)

where a0 (1 + a + b)/4, al (1 + a b)/4, a2 (1 a b)/4 and a3 (1 a + b)/4. The
translates of by A span a space Wo where V1 V0 Wo; the translates and dilates of form
an orthogonal basis of L2(G) in the usual way. (See Lang [11] for details.)

If we consider scaling filters of length two, we obtain the familiar Haar wavelets. In Lang
[12], length-8 wavelets are detailed; some of these also take the form of lacunary Walsh series.

4. THE ALGOI:tITHM FOR WAVELETS ON THE CANTOR DYADIC GROUP.

Here we detail the Mallat tree-type algorithm for the length-4 wavelets on the Cantor dyadic

group. Let co, al, a2 and a3 be as in the previous section and let b0 -al, bl co, b2 -a3

and 53 a2. For f a function on G, j 6 Z, and k 6 A, let fG f(x)(p(x) k)23/2 dx and

di fG f(x)’(/P (x)- k)2j/2 dx. Then the reconstruction algorithm is

and the decomposition algorithm is

4 21/2 E an-P(k) n-i-1 and d 21/2 E bn_.(k)c.+1
n6A r,6A

Note here that the subscripts of the coefficients are treated as members of the group G.
When we identify G as [0, oo), the algorithm takes the following form:

22k 4k+1

2k+1
A d+4k+2

d+l d+1
4k+3

(4.3)

where

ao al a2 a3]A=21/2 bo b b2 b3 (4.4)
a2 a3 ao al
b2 b3 bo bl

The decomposition algorithm produces the lower level (smaller j) coefficients from higher level

coefficients; the reconstruction algorithm produces higher level coefficients k from the coefficients

die and lower level k multiply both sides of (4.3) by A-1.

The following diagram shows the structure of the algorithm. Each rectangle represents

multiplication of the four coefficients above it by A to obtain the four coefficients below it.

The algorithm has a ’matrix filter’ structure reminiscent of Strang and Strela [21], and hence we

are led to consider our wavelets as multiwavelets on the line.
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5. MULTIWAVELETS ON THE LINE.
With ordinary wavelets, there is a single scaling function whose translates span a space

V0 which generates a multiresolution analysis. The condition (e.g.) V-1 C V0 requires that

(x/2) kez ak(x k) for some coefficients ha. In the case of multiwavelets, we would have

several scaling functions 1,... ,. whose translates by integers span a space V0, the dilates of

which form a multiresolution analysis. We would write Then the condition V-1

becomes (x/2) ]Ez P(x- k) where the coefficients P are now n x n matrices. See
Goodman and Lee [6], Goodman et al. [7], Plonka and Strela [19], and Strang and Strela [21] for

more information on multiwavelets.

The Cantor dyadic group wavelets of section 3 can be interpreted as multiwavelets on the

real line. Let and be as in (3.1) and (3.2). Let 1 , 2 o T1, ’1 D and 2 T1,
where T1 is as in (2.1) Define ) by 2k(x)=1(23x-2k)2/2 and CJ (x) =2(2x-2k)2/22k+l

and define similarly. Suppose f is a function on the real line and let 4 f/(x)CZ(x) dx and

dk f f(x)(x)dx for j,k e Z. Then the coefficients are related by (4.3). This follows since

every translate of on G by a member of A is, as a function on the line, an (ordinary) translate

of either 1 or 2.
Let- [1] andS= [’bl].WriteAof(4.4) asA=[au].Then:=

2 2
THEOREM 5.1. We have (x/2) Po(x)+P2(x-2) and (x/2) Qob(x)+Q2(x-2)

where

a31 a32 a33 a34 a41 a42 a43 a44

6. FRACTAL FUNCTIONS ON THE LINE.
In the previous section, we identified the Cantor dyadic group wavelets of section 3 with

multiwavelets on the line. In the present section, we will show that these are piecewise fractal

functions in the sense of Massopust [15] p. 137 and p. 258.

We begin by defining fractal functions. (This definition is actually a specialization of the

general definition in Massopust [15].) Consider the Read-Bajraktarevid operator for real-valued

f on [0, 1]:
f A+sf(2x) ifO_<x<l/2

(6.1)
#+tf(2x-1) if 1/2_<x_<1

where A, , s, are fixed real numbers, with Is[ < 1 and It[ < 1. The domain and range of this

operator is L([0, 1]); it may be shown (Proposition 6.3 below) that there is a unique fixed point f
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for this operator in that space. We call f a fractal function, motivated by the selfosimiliarity of the
graph of f. (The fixed point f of obeys f(x) A4-sf(2x) on [0, 1/2) and f(x) #+tf(2x- 1)
on [1/2, 1], so the graph of f restricted to [0,1/2) and the graph of f restricted to [1/2, 1] are

each affine linear images of the graph of f.) We note that Read-Bajraktarevid operators serve as

a framework for studying functions with fractal graphs in terms of iterated function systems; see

Massopust [15].
It is possible to write the fixed point f explicitly as a series; we consider the case when s t.

Let f0 be the function constantly 1 on [0, 1] and let f, f,-1 for n _> 1, where

sf(2x) if 0 _< x < 1/2
(6.2)f(x)

tf(2x- 1) if 1/2 _< x _< 1

So each fn is piecewise constant and f, is bounded by max{Isln, It, l" }. We have by the linearity
of ,

PROPOSITION 6.3. The fixed point of (6.1) is the function f a + bfl + bf2 + bf3 +
bf4 +---, where a(1 s) + bs A and a(1 t) + bt #, provided s # t.

We now describe integrals involving fractal functions. This is similar to Massopust [15],
sections 5.6.1 and 5.6.2.

LEMMA 6.4. Suppose f is the fixed point of the operator (6.1). Then

f f(x)dx (A + #)/(2 s t).
PROOF. We have

f(x) dx (A + sf(2x))dx + (# + tf(2x- 1))dx
/2

Now suppose f is a fixed point of the operator

f A1 4- sf(2x)
elf(x)

and g is a fixed point of the operator

if0_<z < 1/2
ifl/2_<x_< 1

@2g(x) { A2 + sg(2x)

lz2 + t,g(2x 1)
ifO_<x< 1/2
ifl/2<x< 1

Then

LEMMA 6.5. We have

f(.)(.) dx

1 AI+ (SAl+t#l)
2-s-t2 8 2 AIA2 + #1#2 + (sA2 + t/z2) {L-The proof of this uses the previous lemma and follows the technique of the proof of the

previous lemma.

The next lemma says that the two ’halves’ of a fractal function are fractal functions.

LEMMA 6.6. Suppose f is the fixed point of the operator (6.1). Let fl(x) f(x/2) and

f2(x) f((x + 1)/2) for 0 _< x _< 1. Then fl is the fixed point of the operator

; A 4- sfl (2x)
lfl (..)

(1 t)A + s# + tfl(2x 1)
if 0<x<l/2
if I/2_<x_< 1
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and f2 is the fixed point of the operator

j" (1-s)#+tA+sf2(2x) if 0<_x<l/2
I + tf2(2x- 1) if 1/2 <_ x <_ 1

PROOF. Let be the operator (6.2). Now fl(x) f(x/2) A -I- sf(x) for 0 _< x <
Applying to this equation and solving for fx gives the first result; the second result is similar.

We are now reaxty to describe the Cantor dyadic group wavelets of section 3 as piecewise
fractal functions. Let be as in (3.1) and let 1 , 2 o T1, as in section 5.

THEOREM 6.7. If f(x) (2x) then

’t--b --bf(2x) if 0 <_ x < 1/2
f(x)

--t-b_bf(2x_ l) if 1/2_<x_<1

f fl ()Furthermore (.) {
f2(x l)

if O_<x<l
and2(x)=

f2(x) if O_<x< 1

if 1<x<2 I, fro(x-l) if l<x<2
where

]--b + bfl(2X) if 0 _< x < 1/2
f,(x)=

-bf(2x-1) if 1/2_<x_<1

and
--b nu bf2(2x)

f2(x)
--b bf2(2x 1)

if 0<x<l/2
if I/2<x<l

Also, fl and f2 (and hence 1 and 2) are orthogonal.

PROOF. Let be the operator f(x)
f(2x) if 0 _< x < 1/2

Let go on
-f(2x- 1) if 1/2 _< x _< 1

[0, 1] and let gn gn-1 for n > 1. Let g (1 + ag + abg2 + ab2g3 +.-. ). Applying to ths
equation, we find

2 -b + bg(2x) ifO < x < 1/2
g(x)

1-,+, bg(2x- 1) if 1/2 < x < 1

We may show gn W2..- for n _> 1. Consequently g(x) (2x). The remaining assertions

follow from lemmas 6.4, 6.5 and 6.6.

We remark that we were able to show that 1 and 2 were orthogonlal, using lemma 6.5. Of
course, this was already known in Lang [11], using Fourier analysis on the Cantor dyadic group.
Other properties of these wavelets may be developed the techniques of this section, such as the

scaling relations of theorem 5.1; but we do not pursue this here.
7. OTHER MULTI’WAVELET SYSTEMS WITH SIMILAR ALGORITHMS.

The Cantor dyadic group wavelets of section 3 have an algorithm with a particular structure

as described by the diagram in section 4. That structure in part reflects the arithmetic of the
Cantor dyadic group. Other multiwavelet systems unrelated to the Cantor dyadic group have

algorithms with the same structure. We will describe one example, composed of multiwavelets in

the double-knot spline space S1’2. This space consists of the functions, not necessarily continuous.

whose restrictions to each interval [k, k+ 1) (k an integer) is a first degree polynomial; our notation

resembles de Boor [3] and Plonka [17]. (Here, the first superscript refers to the degree of the basis

functions and the second superscript refers to the decrement for regularity; thus the splines belong
to C-1, meaning no continuity is required. We may describe this space as a linear spline space
where pairs of ’knots’ coincide. See de Boor [3].) The multiwavelets will be compactly supported,
piecewise linear and orthogonal; they fit into the general treatment of Plonka [17] and Plonka
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2x-Ion[0,1)
Also letLet 1 11o,1) and let 2(x)

0 otherwise

1-6x on[0,1/2) [ 14x-3 on[0,1/2)
#l(x) 5-6x on [1/2,1) and 1(x) / 1 2x on [1/2,1).

0 otherwise 0 otherwise

Define k by 4;2k(x) 1(2x- 2k) and 4;k+l(x) 2(2Jx- 2k), and define similarly. We
find that these are related by the scaling relations in theorem 5.1, when the matrix A is replaced
by the matrix

1 -i -3 1 -3
(7.1)A= -i 1 1 1

1 7 -i -I

Let be the space spanned by the integer translates of I and 2. Then Vo S’2. Let

V be the span of{ k 6 Z}, so V {f(2j.) f 6 Vo}. Since 1 and 2 are orthogonal,
{; k 6 Z} forms an orthogonal basis for V. We define level j approximation to be the
projection of a function onto Vj, i.e., PJf k where is obtained as in section 4 above
by integrating f against (normalized) ;. These approximations take the following form: over
each interval I [k2-, (k + 1)2-J), P.f is the least squares best fit line to f. That is, p3f
is given by mx + b where m and b are chosen to minimize fz If(x) -mx bl2 dx. (This follows
since P restricted to functions on I is orthogonal projection onto the subspace V restricted to

I, which is just the space of degree-one polynomials on I.)
We are then able to show the following: Suppose the first and second derivatives of f are

bounded in absolute value by a on [0,1]. Then

IIPaf- flloo < (4a/3)(2-a)2, (7.2)

where the supremum norm is taken over [0,1]. (This follows from the elementary result that

Ilf-rnx-blloo < a/2 if If"(x)l < a on [0,1], where m, b are chosen so that rio,l] If(x)-mx-bl2 dx
is least.) This compares with the estimate lIQ.f fllo= < a2-3, where Q.f is the ordinary Haar
approximation (i.e., QJf is constantly equal to the average value of f on each appropriate dyadic
interval). Thus PJf is in this sense a good approximation to f even though it is not necessarily
continuous.

If we define Wo to be the span of the integer translates of %01 and 2, we find that V1 W0$V0.
(This follows from the orthogonality of 1, 2 and 1, 2.) This, the scaling relations (5.1) with

the matrix (7.1), and the estimate (7.2), imply that {#} is an orthogonal basis of L2(R).
The algorithm of these multiwavelets compares in speed and complexity with the ordinary

Haar algorithm (note that the matrices A and A-1 have entries that are integers divided by 4).
This with the approximation result (7.2) above suggests the utility of these multiwavelets for
applications such as image compression.

For more information about multiresolution analyses and multiscale relations on spline spaces
with higher-order defects, or spline spaces with multiple knots, see Plonka [17] and [18].
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