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ABSTRACT. In this paper, we investigate the asymptotic stability of the recursive sequence

a+ fz?

—, n=0,1,...
1+‘7I,._1

ZTnt1 =

and the existence of certain monotonic solutions of the equation
ZTot1 =22 f(TnyTnets--.1Tn-k), n=0,1,...
which includes as a special case the rational recursive sequence

Bz?h,

T4l = % =’
p—T
1+ Et:l V1 Tn—s

wherea >0,8>0, v>0, v.20,:=1,2,...,k, Ef=17. >0,p€ {2,3,...}and 7 € {1,2,..

331

Lp-1}.

The case when r = 0 has been investigated by Camouzis et. al. [1], and for r = 0 and p = 2 by Camouzis

et. al. [2].
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1. INTRODUCTION

Many authors studied the asymptotic behaviour of the recursive sequence
Tn4l = Tnf(ZTn,Tno1y--Tnk)y n=0,1,...
which includes as a special case the rational recursive sequence

a+bzn

= n=0,1,...
1+ Ex:l YiTn~-1

ZTnt1

(1.1)

(1.2)

See Jaroma et. al. [3]. Also, there are many results about permanence, global attractivity and asymptotic
stability of equation (1.2), see Camouzis et. al. [2], Kocic and Ladas [4-5] and Kocic et. al. [6]. The

investigation of the behaviour of solutions of the equation

Tn+1 =$ﬁf(zn7$n—l7"~7xn—k)7 n=0717"'

(1.3)
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was suggested by Kocic and Ladas [5]. This equation includes as a special case the equation

a + fzk
z =—2  n=0,1,..., 14
n+1 1+7zn-1 ( )

Our aim in this paper is to study the asymptotic stability of the rational recursive sequence (1.4)
when p = 2, see section 2. On the basis of the results of section 2 we also investigate the behaviour of
solutions of equation (1.3), in section 3. We show that under certain conditions on f, there exists two
solutions of (1.3) such that one tends to zero and the other tends to infinity. See theorem 3.1. We apply

this theorem to equation (1.4) when a = 0.
2. THE RECURSIVE SEQUENCE z,4; = (a+ 8z2) /(14 72a-1)
In this section we study the asymptotic stability for the rational recursive sequence

a+ Bzl

) n=0317~~~ (21)
14+ 9Zn-1

Tn41 =

where a > 0 and 3,7 > 0.

The linearized equation associated with (2.1) about Z is

20z vz
- — ——Yn-1 =0, =0,1,... 2.2
Ynt1 1+7iyn + 1+7iyn 1=0, n=0,1, (2.2)

The characteristic equation of (2.2) about Z is

aeo 282 L E g (2.3)

EE PR L -

Equation (2.3) can be rewritten in the form

A= 16)* = 176% - 9, (2.4)
where
_ _ 1z .
l_ﬂ/'yandé‘_l_l_w_:. (2.5)

We summarize the results of this section in the following
THEOREM 2.1
(1) If 8 > 4 and & = 0, then equation (2.1) has two equilibria:

1
Z =0, Z2=—

8-
and Z, is asymptotically stable while Z; is unstable. Neither of them is a global attractor.

(2) If B < 7 and & = 0, then the unique equilibrium point £ = 0 of equation (2.1) is globally
asymptotically stable.

(3) If 3 < v and a > 0, then the unique positive equilibrium point

TG -1
2(y - 8)

z=

of equation (2.1) is asymptotically stable.
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(4) If B = v, equation (2.1) has the unique equilibrium point Z = a which is asymptotically stable.

(5)If 8> 7,a>0and 1> 4a(B - v), then equation (2.1) has two positive equilibria

1- VT daB=7)
2(8-7)

i]:

which is asymptotically stable, and

__1+4/1-4a(B-7)

=TT RB )

which is unstable. None of them is a global attractor.
(6)If8 >~v,a>0and 1 = 4a(B —v), then equation (2.1) has the unique equilibrium Z = 1/2(8-7)
which is neither stable nor a global attractor.

(7) Assume that § > v, a > 0 and 1 < 4a(f — 7). If the initial conditions {z_1,z¢} are such that

1

Zo > -1 and zp > e

then {z,} tends to infinity monotonically.

PROOF.

(1) Assume that 8 > v and a = 0. The characteristic equation of equation (2.2) about #; = 0
is A2 = 0. Hence #; is asymptotically stable, by Corollary 1.3.2 Kocic and Ladas [5] page 14. The

characteristic equation of equation (2.2) about z; = 1/(8 - v) is

Mo+ =0,

Wl

which has two solutions A = 1 £ /1 — 7/. Therefore, Z; is unstable. The nonattractivity of equilibria

Z) and %, follows directly from theorems 3.3 and 5.1 of Camouzis et. al. [1].

(2) Assume that § < 7y and a = 0. Let {z,} be a positive solution of equation (2.1). We have

Int1 _ _ BZn B zn
Zn 149z, Y Tn-1

Hence Zn41/2n < (8/7)"*}(z0/2-1) Vn € N. Since 8/y < 1, then (8/7)"+(z0/2-1) < 1 Vn > ng for
some ng € N. Therefore, £,41 < z, Vn > ng. This implies that limp o 2, = 0, i-e., Z = 0 is globally
asymptotically stable.

(3) Suppose that 8 < v and & > 0. We can see that |A| < 1 for every solution A of the characteristic
equation (2.4), about

V1i+da(y-8)-1
2(y - 8) ’

I =
Indeed, we have the following two cases
First case: 1202 —0 < 0. In this case A = 1+ ir, where 7% = §—126%. Hence |A]> = 126>+ 72 = 0 < 1.
Second case: 126> — 6 > 0. In this case A = 10 + /62 — 6. Hence, |A| < 16 + V1?67 — 8. Since
[ <1, then (2! — 1)8 < 1. Hence (1 — i9)* > [26% — 6 whence 18 + \/I20% — § < 1. Therefore |A| < 1. In
both cases [A| < 1 and thus Z is asymptotically stable.
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(4) Assume that 8 = 4. For every solution A of the characteristic equation (2.4) about Z = a, we

have |A|> = ya/(1 + va) < 1. Therefore, 7 is asymptotically stable.

(5) Suppose that 8 > v, @ > 0 and 1 > 4a(8 — 7). The characteristic equation of (2.2) about

5 1=VI—daF—7)
T A
is obtained by setting Z = Z; in equation (2.5). Since Z; < 1/2(8 —v) < 1/(8 - 7), then I# < 1. We can
see that |A] < 1 for every solution A of equation (2.4). Indeed, we have the following two cases

First case: 1262 -0 < 0. In this case A = 18 +ir, where r? = §—126%. Hence |\|> = 20> +72 =0 < 1.
Second case: 1?6* — @ > 0. In this case A = 10 + /1262 — 4. Hence, |A| < 18 + /1202 — 8. Since
Z; < 1/2(8—7), then 721 /(1 +7Z1) < 7/(28 —7), i.e., # < 1/(21 - 1). Hence (1 —10)? > 1262 — 6 whence
10 +V1?6? — 0 < 1. Therefore |A\| < 1. In both cases || < 1 and thus Z; is asymptotically stable. In a

similar manner, it can be shown that

14 /1-4a(B-7)
2(8-7)

Ty =

is unstable. To show the nonattractivity of Z; and Z,, one chooses the initial conditions {z_y,z¢} such

that

,Z2}-

1
zo > z_1 and o > max
0221 02 { 5=
We show by induction that {z,} is increasing. Indeed, we have

2
Bz

—mn  a=0,1,....
1+7zn—l

Tnt1 >
Then
Bzo
1+ YT —

zy > Zo

Assume that there exists mg > 0 such that
Tpt1 > Tn Vn < my.

Hence
BTm, BZm, Bzo
z >z >z >z
S I s T

> ZTmgs

i.e., {z,} is increasing. The condition zo > Z, implies that z, tends to infinity.

(6) Suppose that 8 > 4, @ > 0 and 1 = 4a(8 — 7). Substituting by £ = 1/2(8 — v) in equation
(2.3) one can easily see that £ = 1/2(# — v) is unstable. The nonattractivity of Z follows directly by

considering a solution {z,} with the initial conditions {z_1,zo} satisfying

zg > z-1 and z¢ > _1 .
B-v
As in the proof of (5), it is easy to show that {z,} tends to infinity.

(7) Assume that 8 >y, @ > 0 and 1 < 4a(8 — 7). Then in a similar way as in (5), one can easily

show that the solution {z,} with the initial conditions {z_1,z¢} are such that

1
zo > z_1 and 79 > ——

T~ 8-
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is increasing. Since equation (2.1) has no real equilibria, then z, tends to infinity.
3. THE EQUATION z,41 = 2% f(Zn, Tn-1s--+Tn—k)

Let f € C([0,00)%*1,(0,00)) such that f satisfies the following conditions

(C1) f(z,u1,...,uk) is nonincreasing in u1,uz, ..., u.
(C2) zP~1f(z,z,...,z) is increasing.
(C3) The equation zP~! f(z,z,...,z) = 1 has a unique positive equilibrium z.

We show that the asymptotic behaviour of the positive solutions of the difference equation

Tn41 =25 f(TnyTno1s- s Tnok) 3.1)

depends on the initial conditions, see theorem 3.1. More precisely, we can choose the initial conditions

such that the corresponding solution {z,} may tend to zero or infinity.

LEMMA 3.1. Assume that {z,} is a solution of equation (3.1). Under conditions (C1-C3) the

following statements are true

(a) If for some ng > —k,
Tngtk < Tng+y »J=0,1,...,k—1land zp,4k < Z,

then
Tntk+1 < Tnek < I VR 2> no.

(b) If for some ng > —k,
Tno+k 2 Tng+y -7 =0,1,...,k—1and Z < ZTp 4,

then
Tnik < Tntk+1 YR > ng.

PROOF.

(a)Assume that for some ng > —k,
Tno+k < Tno+y ’j = 0713"'vk —1land Tno+k < z,

Then

— 2P - p—1
Tno+k+1 = zn°+kf(zno+ka Trnog+k=1s--- 7zng) = zno+kzn°+kf(zno+k7 Tno+k—1y--- vzno)

-1
< Ino+kzﬁ°+kf(znn+k, Tnotky--- ,zno+k) < Tnotk-

We can see by induction that
Tntk+1 < Tnek < T VR 2 ng.

(b) Assume that for some no > -k,
Tnotk 2 Tngty 13 =0,1,...,k—1and Z < ZTpyyk,
Then

— 2P — p—1
Trgtkt1 = Th k[ Tnotks Trotk=1s--s%Tng) = TnotkThg p kS (Tnotks Tnotk=1,---+Tny)

p—1
Z Ino+kxno+kf(zno+k7 Tnotks--- 7zno+k) > Tnotk-
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By induction we see that
Ttk < Tntk+1 VR > g,
THEOREM 3.1. Under conditions (C1-C3) the following statements are true

If {z,,} is a solution of equation (3.1) with initial conditions {z_x,...,Zo} that satisfy
z_,>220>0, j=1,...,kand Z > z,

then z, tends to zero monotonically.

If the initial conditions {z_k,...,zo} are such that
z_, <z, j=1,...,kand Z < z,

then z, tends to infinity monotonically.

PROOF.
(1) From Lemma 3.1 we see that the solution {z,} is decreasing whence it converges to a nonnegative

number, say [. Since l < %, then [ = 0, because of condition (C3).

(2) We can see in a similar manner that {z,} is increasing and z, > £ Vn € N. Therefore, z, — o

as n — oo by condition (C3).
As a direct consequence we obtain the following result

COROLLARY 3.1. Under conditions (C1-C3), equation (3.1) is not permanent.
4. MONOTONE SOLUTIONS OF z,4; = 8z8/(1+ L%, 7:227)

We apply theorem (3.1) to the rational recursive sequence

(4.1)

Bz},
Tnt1 = et

k
1+ Z':l YiToy

where >0, 7, >0Vi=1,...,k, p€ {2,3,...}, r€ {1,2,...,p— 1} a.nd7=2f=1‘y. > 0.

We verify that the function f(z,u1,...,ux) = 8/(1 + EL] 7;u?~") satisfies conditions (C1-C3).
We can see easily that conditions (C1-C2) are satisfied. The equation

Bz?

= — 4.2
14 yzP—7 (42)

T

has a unique positive solution if and only if the function
h(z) = BzP~! ~ 2P " -1
has a unique positive zero. Since

h'(z) = 2P~ B(p — 1) = A(p - 7)),

then we have the following two cases

If r € {2,...,p — 1}, then h has a unique positive zero £ > [y(p — r)/B(p — 1)]!/"~! = zo which is
the unique equilibrium point of (4.1). Indeed, the function & is decreasing for 0 < z < zo and increasing
for £ > z¢. Moreover, limz—.o A(z) = 00 and h(0) = —1 < 0. Then equation (4.1) has a unique positive

equilibrium z.



STABILITY PROBLEM OF NONLINEAR DIFFERENCE EQUATIONS 337

If r =1 and B > v, then equation (4.1) has the unique positive equilibrium

[

Now we can apply theorem (3.1) to equation (4.1) to obtain the following result.
COROLLARY 4.1. Assume that either
re{2,...,p-1}

or
r=1and §>17.

Let Z be the unique positive equilibrium point of equation (4.1) and let {z,} be a solution of equation
(4.1).

If for some ny > —k
Tnotk < Tngty 3 =0,1,...,k—1land z,,4x<Z,

then
Znskt1 < Tnak VR 2> Ng.

If for some ng > —k,

Tnotk 2 Tngtj »J =0,1,...,k—1and Z < Tnytk,
then
Tntk < Tntks1 YR 2 Mo,
If the initial conditions {z_x,...,zo} are such that

z_,>29>0 ,j=1,...,kand Z > z,

then z, tends to zero monotonically.

If the initial conditions {z_k,...,Z¢} are such that
z_,<z ,j=1,...,kand Z < 7o,

then z, — oo monotonically.
Now, we consider the equation

_Beh (4.2)

Tnt1 = -1
149277}

where 8 > 0, v > 0,p € {2,3,...}. We prove that there exists a solution {z,} which tends monotonically
to Z. We follow the proof by Camouzis et. al. [2].

THEOREM 4.1. If 8 > max{y,2,/7}, then equation (4.2) has two solutions {zn} and {yn} such

that {z,} increases to Z and {y,} decreases to Z

PROOF. First, define the functions f_; and f, on [0,00) by

f-a(z) = z fo(z) =z



338 A. E. HAMZA AND M. A. EL-SAYED

and
BfE
f 2—"'_—, n=0,1,....
n+1 1 + 7f:_%
Let

A= {z € [0,00):sup fa(z) < Z}.
n>0

We show that A # 0. Indeed, let @ be a positive number such that
. (81 T
6 < min { z, ( 3 3 5% — 4y .

P
1+ yg2p-2"

We have
f(0) =

One can easily show that f1(8) < fo(8) = 0 < z. By Corollary 4.1 (3), frns1(6) < fn(8) Vo > 0. This
implies that sup,>o f.(6) = fo(8) < z.

We define the function S by
§(x) = sup fa(z).
n>0

We claim that S is continuous on A and A is open. Fix z € A. There exists N > 0 such that

fo(z) S A(z)<...< fn(z) < 2 and  fyqa(z) < fn(z).

If this were not true, then
fo(z) < fi(z) £ ... L S(z) < 7,

whence f,(z) — S(z) = Z which is a contradiction. This implies that
§(z) = fn(z) and  fni1(z) < fn().

Let € > 0 be such that € < min{z — fy(z),(fn(z) — fnv+1(2))/2}. From the continuity of fo,..., fn41,
there exists § > 0 such that for z' € A we have

lz=2'|< 6= sup |fa(z) = ful(z') < e
0<n<N+1 ,

Since fy4+1(2') < fn+1(z) + € < fr(z) — e < fn(z') < fn(z) + € < Z, then
S(z) — e = fn(z) — e < fn(2') < S(z),

and
S(z')= sup fa(z') < sup (fa(z)+¢)
0<n<N 0<n<N

= fn(z)+e< fa(z) + 2~ fn(z) = 3.

Therefore, S is continuous and A is open. Set A = sup A. Then A ¢ A whence S(\) > £. The continuity of
fm for every m > 0 implies that §(A) < Z. Hence §(A) = . Now, we claim that fo(A) < fi(A) < ... < Z.
Indeed, we can see that fi(A) > fo(A). If not, then fo(A) > fi(A) 2 f2())..., because of corollary 4.1.
Hence S(A) = fo(A) = A = Z whence
TP 7)P z)p—1
Bz BE)P  1+7() > 7.

(N = A(2) = 1+ yz2r-2 = 1+ (2)P~1 1+ y32r-2
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Note that #Z < 1. Now assume that fo()) < fi(A) < ... < fn(X) and fN(A) > fn41(A) for some N > 1.
Then S(A) = fn()A) = Z whence

BIRQ) | _ BIRO)
1+ 7550 7 1+9/571 )

S
T l4qzem1(d) 7

fe(A) =

which is a contradiction. Therefore, f,(}) is increasing to zZ.

Next, we define the functions f_; and fo on [0,00) by
fa@y=z , foz)=2*

and
BfE

Bl o,
1+7f27]

fn+l =

We denote by
A= {z €[0,00): inf fa(z) > z}.
n20

We can see that A # . Indeed, let 8 be such that
0> max{ﬁ, (% + %,/72 +4ﬂ)#1}.
We have

___BfRe) _ _ pe*
AO= i T

Set a = 67~1. Then a > (7 + /7% + 46)/28 whence Ba® > 1+ ay i. e. (80*?~%)/(1+v67~!) > 1. Hence
f1(8) > fo(6) = 8% > z. This implies that inf,>0 fn(8) = fo(8) > Z.
Define the function S by
S(z) = ,i"g) fa(=)-

We show that § is continuous on A and A is open. In fact, fix z € A, there exists a natural number N
such that
fo(2) 2 fi(z) 2 ... 2 fn(z) > % and fn4a(2) > fn(2)

Otherwise,
fo(2)2 .2 fa(@) 2 ... 2 5(@) > 7

and therefore
nli_’n‘lwf,.(z) >S5(z)>z

which is a contradiction. Hence
$(z) = fn(z) and fy41(z) > fn(2).
Choose

fnai(2) - fn(z) }
9 2 .

0<e<min{fN(z)-i
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From the continuity of f,, there exists § > 0 such that

Vz' € [0,00) (Iz - 2'| <& = |fa(z) ~ fa(z)l < ),
where n = 0,1,...,N + 1. Hence for z’ € (z - 6§,z + §) N [0,00) we have

faaa(z') > fusi(z) —e> fn(z) +e> fn(z) > fu(z) —e> 2

Therefore
5(z) + €= fn(z) +e> fn(a’) 2 inf fa(z") = 5(2").
Also
S(z) < fa(z) < fa(z')+e 0<Ln <N
Hence
S(z') +¢> S(z)
and

S(z) < §(z') + fn(z) - =.

This implies that S(z') > Z and
1S(z) - $(=")l < ¢,
i.e., S is continuous and A is open.
Let A = inf A. Then A ¢ A. The continuity of f, for every n implies that S(A) = Z. Now, we show
that {fn(A)}n>0 is"decreasing to Z. We can see that fi(A) < fo(A). Assume for the sake of contradiction
that fo(A) € f1(2). Then z < fo(A) < fi(A) £ ... whence S(A) = fo(A) = A2 = z. Hence

g ¥ pzr _149zP7!
R Rt e

H(A) =

which is a contradiction. By induction we can show that

fo(A) > i(A) > ... > %,
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