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ABSTRACT. In this paper, we investigate the asymptotic stability of the recursive sequence

a + Zx n 0,1,...Xn+l + 7zn-]

and the existence of certain monotonic solutions of the equation

x,.,+x xf(xn,x,_] x,.,_), n O,

which includes as a special case the rational recursive sequence

wherea>O, >0, 7>0, 7, >0 i=l 2, k, k,= 7, > 0, p 6 {2,3 and r 6 {1,2,...,p- 1).
The case when r 0 has been investigated by Camouzis et. al. [1], and for r 0 and p 2 by Camouzis

et. al. [2].
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I. INTRODUCTION

Many authors studied the asymptotic behaviour of the recursive sequence

z,.,+l xnf(xn,:r.n-1 xn-), n O, 1,... (1.1)

which includes as a special case the rational recursive sequence

a +bzn n=O, (1.2)Xn+l

See Jaroma et. al. [3]. Also, there are many results about permanence, global attractivity and asymptotic

stability of equation (1.2), see Camouzis et. al. [2], Kocic and Ladas [4-5] and Kocic et. al. [6]. The

investigation of the behaviour of solutions of the equation

Xn+l xf(x,,x,_l,...,x,_k), n O, 1,... (1.3)
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was suggested by Kocic and Ladas [5]. This equation includes as a special case the equation

a + 8z n 0,1,..., (1.4)z,+ + 7Xn_l

Our aim in this paper is to study the asymptotic stability of the rational recursive sequence (1.4)
when p 2, see section 2. On the basis of the results of section 2 we also investigate the behaviour of

solutions of equation (1.3), in section 3. We show that under certain conditions on f, there exists two

solutions of (1.3) such that one tends to zero and the other tends to infinity. See theorem 3.1. We apply

this theorem to equation (1.4) when c 0.

2. THE RECURSIVE SEQUENCE zn+l (a + 8z)/(1 + 7zn-1)

In this section we study the asymptotic stability for the rational recursive sequence

+
x,+l , n--0,1 (2.1)

+

where c >_ 0 and 5,7 > 0.

The linearized equation associated with (2.1) about is

Y,+I- l+3‘Y + 1-yn-1 =0’ n=0,1,... (2.2)

The characteristic equation of (2.2) about . is

+ 7" + 7. =0. (2.3)

Equation (2.3) can be rewritten in the form

(A lO) 1202 O, (2.4)

where

and/9 7.
+3‘.

We summarize the results of this section in the following

THEOREM 2.1

(1) If 8 > 3‘ and c 0, then equation (2.1) has two equilibria:

’1 O, .2 8--3‘

and l is asymptotically stable while 2 is unstable. Neither of them is a global attractor.

(2) If 8 < 3’ and a 0, then the unique equilibrium point . 0 of equation (2.1) is globally

asymptotically stable.

(3) If/3 < 3’ and a > 0, then the unique positive equilibrium point

v/i + 4cz(7 8)
2(3‘ 5)

of equation (2.1) is asymptotically stable.
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(4) If/3 7, equation (2.1) has the unique equilibrium point a which is asymptotically stable.

(5) If/3 > 7, a > 0 and > 4a(/3 7), then equation (2.1) has two positive equilibria

V/1 4a(/3 -/)

which is asymptotically stable, and

"t- V/I -4a(/3- 7)

which is unstable. None of them is a global attractor.

(6) If/3 > 7, a > 0 and 4((/3--/), then equation (2.1) has the unique equilibrium 1/2(/3-7)
which is neither stable nor a global attractor.

(7) Assume that/3 > -/, a > 0 and < 4((/3- -/). If the initial conditions (x_l,x0) are such that

Z0 -- Z-1 and x0

_
,

then {z,} tends to infinity monotonically.

PROOF.

(1) Assume that /3 > 7 and a 0. The characteristic equation of equation (2.2) about 1 0

is A 0. Hence 1 is asymptotically stable, by Corollary 1.3.2 Kocic and Ladas [51 page 14. The

characteristic equation of equation (2.2) about 2 1/(/3- -/) is

As-2A+-% =0,

which has two solutions A -t- V/i "//3. Therefore, 2 is unstable. The nonattractivity of equilibria

1 and : follows directly from theorems 3.3 and 5.1 of Camouzis et. al. [1].

(2) Assume that/3 < -/and a 0. Let {z,) be a positive solution of equation (2.1). We have

(

Hence Xn-t-1/gn < (/-/)n’l’l(xo/X-1) t N. Since/3/-/< 1, then (/31-/)"+(xolx-) < Vn >_ no for

some no N. Therefore, Xn+l < x, Vn _> no. This implies that limn.,oo x 0, i.e., 0 is globally
asymptotically stable.

(3) Suppose that/3 ( -/and a > 0. We can see that [A[ < for every solution A of the chazacteristic

equation (2.4), about

"
V/1 + 4a(’-/3)-

2(’r- )

Indeed, we have the following two cases

First case: lZO -0 < 0. In this case A 104-ir, where r O-lO2. Hence [A[ lO + r 0 < 1.

Second case: I0-0 >_ O. In this case A 10:klzO-0. Hence, [A] _< 10+v/lO-0. Since

< 1, then (2/- 1)0 < 1. Hence (1 10) > 10 0 whence 10 + 10 0 < 1. Therefore IA < . In
both cases [A[ < and thus " is asymptotically stable.
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(4) Assume that 7- For every solution A of the characteristic equation (2.4) about a, we

have IA[ 7/(1 + 7c) < 1. Therefore, is asymptoticMly stable.

(5) Suppose that > 7, c > 0 and > 4c(3 7). The characteristic equation of (2.2) about

V/I 4c(3 7)

is obtained by setting " I in equation (2.5). Since I < I/2(3 7) < I/(3 7), then 10 < I. We can

see that IAI < for every solution A of equation (2.4). Indeed, we have the following two cses

First case: I0 -0 < 0. In this case A 104-Jr, where r 0-120. Hence IAI I0 + r 0 < I.

Second case: 120-0 >_ 0. In this case A 104-vqO2-0. Hence, [A[ _< 10+V120-0. Since

’1 < 1/2(3- 7), then 71/(1 + 7’) < 7/(2-7), i.e., e < 1/(2/- 1). Hence (1-IO) > 120 -O whence

10 + vq0 -0 < 1. Therefore IAI < 1. In both cases IA] < and thus ’ is asymptotically stable. In a

similar manner, it can be shown that

+ V/1 4c(3 7)

is unstable. To show the nonattractivity of : and 2, one chooses the initial conditions (z-l,zo} such

that

zo > x_l and zo > max{--- 5:2 }.

We show by induction that {x,,} is increasing. Indeed, we have

3x2a n 0, 1,xn+ > + 7Xn_l

Then

z >Zo>xo.+ 7zo

Assume that there exists m0 _> 0 such that

x,+ >z, Vn<m0.

Hence
grno rrt /270

> Xmo > m0 > moXmo+l > Xmo + 7Zm0 -1 + 7Xmo + 7X0

i.e., {zn} is increing. The condition z0 impes that z tends to infinity.

(6) Suppose that B > 7, > 0 and 4(B-7). Substituting by 1/2(3-7) inequation

(2.3) one c eily s that 1/2(3- 7) is unstable. The nonattr&ctivity of follows directly by

considering a solution {zn) with the initiM conditions {z-,zo} satisfying

Xo > z_ and Xo >

As in the proof of (5), it is easy to show that {x} tends to infinity.

(7) Assume that 3 > 7, a > 0 and < 4a(3- 7). Then in a similar way as in (5), one can easily

show that the solution {x} with the initial conditions {z_,Xo) are such that

2;0 >-- Z-1 and Zo >_
3-7
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is increasing. Since equation (2.1) has no real equilibria, then z, tends to infinity.

3. THE EQUATION zn+1 zf(zn, zn_i,...,z_)

Let f 6 C([0, o0)k+l,(0, OO))such that f satisfies the following conditions

(C1) f(x,u, ,u) is nonincreasing in u,u ,uk.

(C2) zn-*f(z,z ,z) is increasing.

(C3) The equation z-f(z,z,...,x) has a unique positive equilibrium .
We show that the asymptotic behaviour of the positive solutions of the difference equation

(3.1)

depends on the initial conditions, see theorem 3.1. More precisely, we can choose the initial conditions

such that the corresponding solution {x} may tend to zero or infinity.

LEMMA 3.1. Assume that {xn} is a solution of equation (3.1). Under conditions (C1-C3) the

following statements are true

(a) If for some no >_ -k,

X,,o+_<Xo+: ,j=O, 1,...,k- and xno+ <,

then

xn++l < Xn+k < Vn >_no.

(b) If for some no >_ -k,

Z,o+k>_Zo+ ,j=0,1,...,k-1 and<Zo+k,

then

xn+k < Xr,+k+ Vn >_ no.

PROOF.

(a)Assume that for some no >_ -k,

Z,o+ _< X,o+ ,j 0,1,...,k- and X,o+k < .,
Then

Zno+k+l Z
p-1no+kf(X,no+k,Zno+k-l,...,X.no) Zno+kZno+kf(no+k,X,no+k-1,... ,Xno)

< o+</(o+,o+,...,o+) < o+.

We can see by induction that

no.

(b) Assume that for some no > -k,

X,o+k>_Z,o+: ,j=O, 1,...,k- and <X,o+k,

Then
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By induction we see that

THEOREM 3.1. Under conditions (C1-C3) the following statements axe true

If {x) is a solution of equation (3.1) with initial conditions {x_k,...,xo) that satisfy

x_. _zo>O, j= 1,...,kand:>zo,

then zn tends to zero monotonically.

If the initial conditions {z-k,... ,x0) are such that

x_._<:Co, j= 1,...,kand’<Zo,

then z, tends to infinity monotonically.

PROOF.

(I) From Lemma 3.1 we see that the solution {z, ) is decreasing whence it converges to a nonnegative

number, say I. Since < , then 0, because of condition (C3).

(2) We can see in a similar manner that

as n oc by condition (C3).

As a direct consequence we obtain the following result

COROLLARY 3.1. Under conditions (C1-C3), equation (3.1) is not permanent.

4. MONOTONE SOLUTIONS OF

We apply theorem (3.1) to the rational recursive sequence

(4.1)

kwhere/9 > 0, 7, > 0 Vi ,k, p {2,3 }, r {1,2 ,p- 1} and 7 ’,=1 7, > 0.

We verify that the function f(x,u ,Uk) /(1 -{- E,k=, 7iu,-) satisfies conditions (C1-C3).
We can see easily that conditions (C1-C2) are satisfied. The equation

(4.2)

has a unique positive solution if and only if the function

h(z) xp-1 ":rp-r

has a unique positive zero. Since

h’ (y,) zP-r-l[(p- 1)x- 7(P- r)],

then we have the following two cases

If r {2,...,p- 1}, then h has a unique positive zero > [(p- r)/3(p- 1)] 1/-1 z0 which is

the unique equilibrium point of (4.1). Indeed, the function h is decreasing for 0 < x < z0 and increasing

for x > x0. Moreover, limz--,oo h(x) oo and h(0) -1 < 0. Then equation (4.1) has a unique positive

equilibrium .
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If r and/3 > 7, then equation (4.1) has the unique positive equilibrium

Now we can apply theorem (3.1) to equation (4.1) to obtain the following result.

COROLLARY 4.1. Assume that either

or

r= and/3 > 7.

Let be the unique positive equilibrium point of equation (4.1) and let {z} be a solution of equation

(4.1).

If for some no > -k

X,o+k < X,,o+ ,j O, 1,...,k-1 and Xno+k <

then

xn+k+ < xn+. Vn > no.

If for some n0 > -k,

Zno+k>Z,,o+j ,j=0,1,...,k-1 and

then

xn+l,: < xn+a+l Vn _> no.

If the initial conditions {z-a,... ,x0} are such that

z_ >z0>0 ,j= 1,...,kand

then x, tends to zero monotonically.

If the initial conditions {z-a,... ,x0} are such that

x_ <xo ,j= 1,...,kand<z0,

then x, oo monotonically.

Now, we consider the equation

(4.2)

where/3 > 0, 7 > 0,p E {2,3,...}. We prove that there exists a solution {x,,} which tends monotonically

to . We follow the proof by Camouzis et. al. [2].

THEOREM 4.1. If/3 > max{7,2V}, then equation (4.2) has two solutions {za} and {yn} such

that {z,} increases to and {y,,} decreases to

PROOF. First, define the functions f-1 and f0 on [0, oc) by

f-() f0()=
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and

v-l, n=O,1,
+ 7f-1

Let
A {z E [O, oc)- sup A(x) < }.

>0

We show that A # 0. Indeed, let 0 be a positive number such that

We have

f,(o) + 702v-2"
One can easily show that f(O) < fo(O) 0 < . By Corollary 4.1 (3), f+x(0) < f(0) Vn > O. This

implies that sup,,_>o f,,,(O) fo(O) < ,.
We" define the function S by

sup f(x).
n>O

We claim that S is continuous on A and A is open. Fix x E A. There exists N > 0 such that

fo(x) < Ix(x) <_... <_ fN(z) < and f+(x) < IN(z).

If this were not true, then

yo(z) _< A(x) _< _< s(z) < ,
whence f,,(x) S(z) , which is a contradiction. This implies that

S(z) fN(Z) and fN+x(z) < fN(z).

Let > 0 be such that < min{ .fN(x),(fN(x)- .fN+l(x))/2}. From the continuity of f0,...,ftv+l,
there exists > 0 such that for z’ E A we have

Iz- z’l < , = sup IA(z)- A(z’)l < e.
o<n<N+X

Since fN+x(x’) < fN+X(x)+ < fN(X)- < fN(X’) < f]v(X)+ < ’, then

S(z) fN(Z) < fN(Z’) <_

and

S(z’) sup fn(x’) < sup (f(z) + )
O<_n<_m O<n<_m

.fN(z) + < fN(=) + IN(X) ,.
Therefore, S is continuous and A is open. Set A sup A. Then A $ A whence S(A) >_ . The continuity of

f, for every m > 0 implies that S(A) < . Hence S(A) . Now, we claim that f0(A) < fl(A) < < 2.

Indeed, we can see that fx(A) > fo(A). If not, then fo(A) > fl(A) > f2(A)..., because of corollary 4.1.

Hence S(A) =/o(A) A : whence
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Note that ’2 < 1. Now assume that f0(A) < ]’I(A) < < fN(A) and N() >_ ]’N+I() for some N _> 1.

Then S() f/v(A) ’2 whence

+

which is a contriiction. Therefore, f(A) is increasing to ’2.

Next, we define the functions f_ and f0 on [0, o) by

f_l(r) r f0(r) ;r

and

n=0,1f,+l
/ Tf-]

We denote by

A {z e [0,oo)" inf f,,,(z) > "2}.

We can see that A # $. Indeed, let 8 be such that

{ }0 > max V, (- + -V/7 + 4/)-We have

f(o) Z.t’I(o) Zo2
-I- "),f1(0) -’1-

Set a 0p-t. Then a > (7 + V/72 + 4fl)/2/ whence fla > +aT i. e. (f102P-2)/(1 +T0p-t) > 1. Hence

fl (0) > fo(O) 0 > ’2. This implies that inf,>o f,(O) fo(O) > "2.

Define the function S by

S(x) inf
n>0

We show that S is continuous on A and A is open. In fact, fix z E A, there exists a natura2 number N

such that

fo(z) >_ fl(z) _> >_ fN(z) > ’2 and fN+l(Z) > fN(X)

Otherwise,

lo(z) >_ _> l(x) _>... _> s(x) >

and therefore
lim f,.,(z)

_
S(z) > "2

which is a contradiction. Hence

S(x) fN(X) and fN+l(X) > fly(x).

Choose

0 < < rain {.fN(z)- ’2,
fN+() fg(=) }.2
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From the continuity of f, there exists > 0 such that

where n 0,1,...,N + 1. Hence for z’ (x ,z -#- ) f’l [0, oo) we have

Therefore

Hence

and

This implies that S(x’) > and

f+(’) > .t’+x(:c)- > .f()+ > fN(’) > f(:)- > "

S(z) + fN(z) + > fN(X’) > inf f,(z’) ,if(a:’).
n>O

s(.) _< I(*) < A(.’) + 0 _< _< N.

s(,’) + > s(,)

s(.) < s(’) +/(.) .
IS()- s(.’)l < ,

i.e., S is continuous and A is open.

Let A inf A. Then A A. The continuity of fn for every n implies that S(A) . Now, we show

that {f(A)}n>o iddecreasing to . We can see that fx(A) < f0(A). Assume for the ske of contraiiction

that fo(A) < fl(A). Then < f0(A) < fl(A) < whence S(A) f0(A) A . Hence

BA2p Bp + 7f(A) + 7A-1 + 7z’ < ’I +7

which is a contradiction. By induction we can show that

lo(,X) > .f(,x) > > .
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