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ABSTRACT. The object of the present paper is to derive some argument properties of certain integral

operators. Our results contain some interesting corollaries as the special cases.
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1. INTRODUCTION
Let A denote the class offunctions ofthe form

f(z) z + oz

which are analytic in the open unit disk U {z Iz < 1}. Iff and g are analytic in U, we say that f is

subordinate to g, written f - g, if there exists a Schwarz function w(z) in U such that f(z) g(w(z)).
A function f e A is said to be in the class S* [E, F] if

l+Ezzf’(z) -< (z6U,-I<F<E<I)f() + FZ
The class S*[E,F] was studied in [1,2]. In particular, S’[1 2c, 1] S’(c)(0 _< c < 1) is the well

known class of starlike functions of order a. We observe [2] that a function f is in S"[E,F] if and only

if

f(z) 1-.F < 1-.F

and

zf’(z) } 1 E
Re j(z)’ >

2
(z 6 U,F 1). (1.3)

A function f e A is said to be in the class B(p, a,) if it satisfies

Re{ Zf’(z)f"-I }g,,() >/(z e u)

for some #(# > 0), (0 _< < I) and g e S*(o). Furthermore, we denote BI(/, a,/) bythe subclass

of B(/, a, ,O) for g(z) =_ z e S* (a). The classes B(, a,/) and B (/, a, ) are the subclasses of

Bazilevi6 functions in U [3]. We also note that B(I, a,/) C(a,/) is an important subclass of close-

to-convex functions [4].
For a positive real number # > 0 and a function f A, we define the integral operator Jc., by
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Jcu(f)
c + # tc-l fu(t)dt ;(c > (1 4)

Kumar and Shukla [5] showed that the integral operator Jc,u(f) defined by (1.4) belongs to the class
S*[E,F] for c >_ u(g-:l)l_F, whenever f S’[E,F]. The operator Je.1, when c N {1,2,3, .}, was
introduced by Bemardi [6]. Further, the operator J. was studied earlier by Libera [7] and
Livingston [8].

In the present paper, we give some argument properties of the integral operator defined by
(1.4). We also generalize the previous results of Libera [7], Owa and Srivastava [9] and Owa and
Obradovi6 10].

2. MAIN RESULTS
In proving our main results, we shall need the following lemmas.
LEMMA 1 ([11]). Let M(z) and N(z) be regular in U with M(0) N(0) 0, and let/ be real.

If N(z) maps U onto a (possibly many-sheeted) region which is starlike with respect to the origin, then

Re
N’(z) > (z e U) = Re M(z)

and

Re N.t{z) < ,O(z U) = Re N(’z) < (z U).

LEMMA 2 ([12]). Let p(z) be analytic in U, p(0) 1, p(z) :/:. 0 in U and suppose that there
exists a point zo U such that

Iv()l < fo I1 < Iol

and

where/ > 0. Then we have

o’(o)
ik,

where

whvn argp(zo) r
2

and

1(1)k<- a+-a when argp(zo)
2

where

p(o) +m( > o).

With the help ofLemma and Lemma 2, we now derive

THEOREM 1. Let c and # be real numbers with c > 0, > 0 and 1 < F < E < 1 and let

.fA If
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for some g S" [E, F], then

where arc,. is the imegral operator defined by (1.4) and r/(O < r/_< 1) is the solution ofthe equation

{2(rsin(1-t(E,F)))6 7+-Tan-1 for F :/: 1
7r c + +rlcos ’(1 tc(E,F))I+F "r] for F= -1,

when

tc(E,F)
2 8in_ ( E- F
7r c(1-F2)+I-EF

(2.1)

(2.2)

PROOF. Let us put

where

and

M(z)p(z)-
N(z)’

1
zf, t-If"(t)dt t1 tC-tg(t)dtM(z)

_
(z) c

N(z) # tc-gu(t)dt.

Then p(z) is analytic in Uwith p(0) 1. By a simple calculation, we have

M’(z)
N’(z)

N(z) zp’(z))p(z) 1 + zN’(z) p(z)

1(zf’(z)f"-(z) )
Since g e S*[E,F], J.(g) e S*[E,F] [5] and hence N(z) is (possibly many-sheeted) starlike function

with respect to the origin. Therefore, from our assumption and Lemma 1, p(z) 0 in U.
Ifthere exists a point zo 6 U such that

[argv(z)[< -- for Izl < Izol

and

then, from Lemma 2, we have

0p’ (o)

where

when argp(zo -
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and

when argp(zo)
2

where

p(zo) i.(. > 0).

Since Jc.z(g) E S’[E,F], from (1.2) and (1.3), we have

g’() (&,(g))’
N() J,.()

/ c pe’T,

where

1-E I+E
c + I .F < P < C + --tc(E,F)<<t(E,F) forF# -I,

when t,(E, F) is given by (2.2), and

1-E
c+

2
<p< oo,

--1<<1 for F= -1.

At first, suppose that p(zo) ia(a > 0). For the case F : 1, we obtain

z0f’(z0)f"-I (z0) _/) (1 )M’(zo)
arg

N’(zo)

( 1 zo/g(z,o))argp(zo) + arg 1 + z(y.,.(g))’ p(zo)
&(g) + c

rr7- + arg ( (pe’ -’)1+ ],, irlk- + Tan-1 g
+og(- )

_> r?-" / Tan_ ( sin (1- tc(E,F))
c / +EI+F +cos ’(1. t(E,F))

_r_,
2

where t(E,F) and 6 are given by (2.2) and (2.1), respectively. Similarly, for the case F 1, we

have

(f()F-() )
These are a contradiction to the assumption ofour theorem.

Next, suppose that p(zo) ia(a > 0). For the case F 4= 1, applying the same method as the

above, we have

arg(zf’(z)fz-(z) < "Tr Tan_ ( nsin(1-t(E,F))
-[- I+EI+F /7]C08 "(1

where t(E,F) and 6 are given by (2.2) and (2.1), respectively and for the case F 1, we have
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/’()/"-() ) ’arg
g"(zo) B <

2

which are contradictions to the assumption. Therefore we complete the proofof our theorem.

Taking E 1 2a(0 < a < 1) and F 1 in Theorem 1, we have
COROLLARY 1. Let c _> 0, # > 0 and f E A. If

z’f’(z)f"-(z) < (0 < < 1, 0 < < 1)arg
g(z)

for some g E S* (a), then

arg

where dc,u is the imegral operator defined by (1.4).
REMARK 1. For 6 1, Corollary is the result obtained by Owa and Obradovi6 [10].
Setting E 1, F 1, 1, 6 1 and g(z) z in Theorem l, we have

COROLLARY 2. Let c _> 0 and f A. If

.Re ft(z) >/(0 <_/5 < I),

then

e (s,. (I))’ >/,

where Jc,1 is the imegral operator defined by (1.4).
Letting # 1 in Theorem 1, we have

COROLLARY 3. Let c _> 0 and 1 _< F < E < 1 and let f A. If

)1arg
g(z) / <-(0_</<1,0<6<1)

for some g 6 S" [E, F], then

where Jc,1 is the integral operator defined by (1.4) and r/(0 < r/< 1) is the solution ofthe equation (2.1).
Taking E 1 2a(0 _< a < 1) and F 1 in Corollary 3, we have

COROLLARY 4. Let c >_ 0 and f A. If

then

arg Jc,l(f)
cz < -,

where Jc,1 is the integral operator defined by (1.4).
Putting E 1 2a(0 _< a < 1), F 1 and//= 1 in Corollary 3 and Corollary 4, we obtain the

following result ofOwa and Srivastava [9].
COROLLARY 5. If the function f defined by (1.1) is in the class C(c,/), then the integral

operator Jc,1 (f)(c > 0) defined by (1.4) is also in the class c(a,/).
REMARK 2. Taking c =/ 0 and c 1 in Corollary 5, we obtain the result given earlier by

Libera [7]
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By using the same technique as in proving Theorem 1, we have
THEOREM 2. Let c and # be real numbers with c > 0,/ > 0 and 1 < F < E < 1 and let

fA. If

,qV(z) < -- (/ > 1, 0 < 6 <_ 1)

for some g E S* [E, F], then

where Jc,, is the integral operator defined by (1.4) and r/(0 < r/< 1) is the solution ofthe equation (2.1)
Putting g 1 2a(0 < a < 1), F 1, # 1 and 6 1 in Theorem 2, we have the following

result by Owa and Srivastava [9].
COROLLARY 6. Let c > 0 and .f E A. If

() <(>1)

for some g S* (c), then

z(Jc,1 (f))’ }
where ,Jc,1 is the integral operator defined by (1.4).
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