TWO THEOREMS ON (ε)-SASAKIAN MANIFOLDS

XU XUFENG

Department of Mathematics Xuzhou Normal University Xuzhou, 221009, P.R. China

and

CHAO XIAOLI

Department of Mathematics Hangzhou University Hangzhou, 310028, P.R. China

(Received April 1, 1996 and in revised form July 15, 1996)

ABSTRACT. In this paper, We prove that every (ε) -sasakian manifold is a hypersurface of an indefinite kaehlerian manifold, and give a necessary and sufficient condition for a Riemannian manifold to be an (ε) - sasakian manifold.

KEY WORDS AND PHRASES: (ε)-sasakian manifolds; real hypersurface; indefinite kaehlerian manifolds; (ε)-almost contact structure.

1. INTRODUCTION Let M be a real (2n+1)-dimensional differentiable manifold endowed with an almost contact structure (ϕ, ξ, η) . This means that ϕ is a tensor field of type (1,1), ξ is a vector field and η is a 1-form on M satisfying:

$$\phi^2 = -I + \eta \otimes \xi; \qquad \eta(\xi) = 1 \tag{1}$$

It follows that

$$\eta \circ \phi = 0; \phi(\xi) = 0; rank\phi = 2n \tag{2}$$

If there exists a semi-Riemannian metric g on M that satisfies (see [1])

$$g(\phi X, \phi Y) = g(X, Y) - \varepsilon \eta(X) \eta(Y) \qquad \forall X, Y \in \Gamma(TM)$$
(3)

Where $\varepsilon = \pm 1$, We call (ϕ, ξ, η, g) an (ε) -almost contact metric structure and M an (ε) -almost contact metric manifold.

From (3), we have

$$\eta(X) = \varepsilon g(X, \xi) \qquad \forall X \in \Gamma(TM)$$
 (4)

$$g(\xi,\xi) = \varepsilon \tag{5}$$

We say that (ϕ, ξ, η, g) is an (ε) -contact metric structure if we have

$$g(X,\phi Y) = d\eta(X,Y)$$
 $\forall X,Y \in \Gamma(TM)$ (6)

In this case, M is an (ε) -contact metric manifold. An (ε) -contact metric structure which is normal is called an (ε) -sasakian structure. A manifold endowed with an (ε) -sasakian structure is called an (ε) -sasakian manifold.

In[1], A. Bejancu and K.L. Duggal give a theorem as following:

THEOREM A (see [1] theorem 6)

Let M be an orientable real hypersurface of an indefinite kaehlerian manifold \overline{M} , then the following assertions with respect to the (ε) -almost contact metric structure inherited by M are equivalent:

(1) M is an (ε) -sasakian manifold

(2) The (ε) -characteristic vector field ξ satisfies

$$\nabla_X \xi = -\varepsilon \phi X \qquad \forall X \in \Gamma(TM)$$

(3) The shape operator A satisfies

$$AX = -\varepsilon X + (\varepsilon + \eta(A\xi))\eta(X)\xi \qquad \forall X \in \Gamma(TM)$$

This produces a problem whether an (ε) - sasakian manifold must be a real hypersurface of some indefinite kaehlerian manifold. In sec.2, we prove that the answer to this problem is positive. that is

THEOREM 1.1. Every (ε) -sasakian manifold must be a real hypersurface of some indefinite kaehlerian manifold.

In [2], Hatakeyama, Ogewa and Tanno give the condition for a Riemannian manifold to be a K-contact manifold, they prove

THEOREM B (see [2] or [4]) In order that a (2n + 1)-dimensional Riemannian manifold M is K-contact, it is necessary and sufficient that the following two conditions are satisfied:

- (1) M admits a unit killing vector field ξ ;
- (2) The sectional curvatures for plane sections containing ξ are equal to 1 at every point of M.

In sec.3, we generalize Theorem B by giving the necessary and sufficient condition for a Riemannian manifold to be an (ε) - sasakian manifold, that is

THEOREM 1.2. In order that a (2n + 1)-dimensional Riemannian manifold M is (ε) -sasakian manifold, it is necessary and sufficient that the following three conditions are satisfied:

(1) M admits a unit killing vector field ξ ;

(2) The sectional curvature for plane sections containing ξ are equal to 1 or -1 at every point on M.

(3) $R(X,Y)\xi = 0$ $\forall X,Y \perp \xi$

2. THE PROOF OF THEOREM 1.1

Let M be a (2n+1)-dimensional (ε) -sasakian manifold with (ε) -sasakian structure (ϕ, ξ, η, g) . Let R be real line with coordinate t and unit tangent vector $\frac{d}{dt}$. Denote $M \times R$ by \overline{M} , then vector fields on \overline{M} are given by $\overline{X} = (X, f\frac{d}{dt}), \overline{Y} = (Y, h\frac{d}{dt}), \cdots$, Where $X, Y \ldots$, are vector fields tangent to M and f, h, \ldots , are function on M, we define a linear map J on the tangent space of \overline{M} by [5]

$$J\overline{X} = J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt})$$
(7)

From (1) and (2), we have

$$J^{2}\overline{X} = J(\phi X - f\xi, \eta(X)\frac{d}{dt}) = (\phi^{2}X - \eta(X)\xi, -f\frac{d}{dt}) = -\overline{X}$$

It shows that J is almost complex structure on \overline{M} , but M is an (ε) -sasakian manifold, this means N(J) = 0, then J is a complex structure on \overline{M} , thus $\overline{M} = M \times R$ is a complex manifold.

Let $\pi: \overline{M} = M \times R \to M$ be the projection map, we introduce a metric G on \overline{M} by

$$G = e^{\varepsilon t} (\pi^* g + \varepsilon dt \otimes dt) \tag{8}$$

As an induced metric of g, we have

$$G((X,0),(Y,0)) = g(X,Y) \qquad (t=0)$$
(9)

For any vector fields $\overline{X} = (X, f\frac{d}{dt}), \overline{Y} = (Y, h\frac{d}{dt})$ on \overline{M} , we obtain from (7)(8)

$$G(\overline{X},\overline{Y}) = e^{\varepsilon t}(g(X,Y) + \varepsilon fh)$$
(10)

$$G(J\overline{X},\overline{Y}) = e^{\varepsilon t}(g(\phi X,Y) - \varepsilon f\eta(Y) + \varepsilon h\eta(X))$$
(11)

$$G(\overline{X}, J\overline{Y}) = e^{\varepsilon t}(g(X, \phi Y) - \varepsilon h\eta(X) + \varepsilon f\eta(Y))$$
(12)

$$G(J\overline{X}, J\overline{Y}) = G((\phi X - f\xi, \eta(X)\frac{d}{dt}), (\phi Y - h\xi, \eta(Y)\frac{d}{dt}))$$

= $e^{\varepsilon t}(g(\phi X, \phi Y) + \varepsilon fh + \varepsilon \eta(X)\eta(Y))$ (13)

From (10)-(13), we see

$$G(\overline{X}, J\overline{Y}) = -G(J\overline{X}, \overline{Y}), \qquad G(J\overline{X}, J\overline{Y}) = G(\overline{X}, \overline{Y})$$

Thus G is a Hermitian metric on \overline{M} .

Define a 2-fore on \overline{M} by

$$\Phi = e^{\varepsilon t} (\pi^* d\eta + \varepsilon dt \wedge (\pi^* \eta)) \tag{14}$$

using $\pi^* \circ d = d \circ \pi^*$, we get

$$d\Phi = \epsilon e^{\epsilon t} dt \wedge (\pi^* d\eta + \epsilon dt \wedge \pi^* \eta)) + e^{\epsilon t} [\pi^* d^2 \eta + \epsilon d^2 t \wedge (\pi^* \eta) - \epsilon dt \wedge \pi^* d\eta] = 0$$
(15)

therefore, ϕ is a closed 2-form on \overline{M} , by a direct computation, we get

$$\Phi(\overline{X}, \overline{Y}) = \Phi((X, f\frac{d}{dt}), (Y, h\frac{d}{dt}))$$

= $e^{\epsilon t}(d\eta(X, Y) + \varepsilon(dt \wedge \pi^*\eta)(\overline{X}, \overline{Y}))$
= $e^{\epsilon t}(d\eta(X, Y) + \varepsilon f\eta(Y) - \varepsilon h\eta(X))$ (16)

From (12) and (16) we see that

$$\Phi(\overline{X},\overline{Y}) = G(\overline{X},J\overline{Y}) \tag{17}$$

Then from (15) and (17), we know, the Φ defined by (14) is the closed fundamental 2-form, thus the G defined by (8) is an indefinite kaehlerian metric on $\overline{M}^{[3]}$ and hence $\overline{M} = M \times R$ is an indefinite kaehlerian manifold.

3. THE PROOF OF THEOREM 1.2

First of all, we state some results which we shall need later.

LEMMA 3.1. (see [1] p. 548). An (ε) -almost contact metric structure (ϕ, ξ, η, g) is (ε) -sasakian if and only if

$$(\nabla_X \phi)Y = g(X, Y)\xi - \varepsilon \eta(Y)X, \qquad \forall X, Y \in \Gamma(TM)$$
(18)

Where ∇ is the Levi-civita connection with respect to g.

If we replace Y by ξ in (18) and from (1) (2) we get

$$\nabla_X \xi = -\varepsilon \phi X \qquad \forall X \in \Gamma(TM) \tag{19}$$

Because

$$\begin{aligned} (L_{\xi}g)(X,Y) &= \xi g(X,Y) - g([\xi,X],Y) - g(X,[\xi,Y]) \\ &= \xi g(X,Y) - g(\nabla_{\xi}X - \nabla_{X}\xi,Y) - g(X,\nabla_{\xi}Y - \nabla_{Y}\xi) \\ &= (\xi g(X,Y) - g(\nabla_{\xi}X,Y) - g(X,\nabla_{\xi}Y + g(\nabla_{X}\xi,Y) + g(X,\nabla_{Y}\xi)) \\ &= (\nabla_{\xi}g)(X,Y) + g(\nabla_{X}\xi,Y) + g(X,\nabla_{Y}\xi) \\ &= g(-\varepsilon\phi X,Y) + g(X,-\varepsilon\phi Y) \\ &= -\varepsilon(g(\phi X,Y) + g(X,\phi Y)) = 0 \quad \forall X,Y \in \Gamma(TM) \end{aligned}$$

Then we get

PROPOSITION 3.1. The characteristic vector field ξ on an (ε) -sasakian manifold is a killing vector field.

LEMMA 3.2.([6] p.265) Let M be a contact metric manifold with contact metric structure (ϕ, ξ, η, g) . Then $N^{(3)} \equiv (L_{\xi}\phi)X$ vanishes if and only if ξ is a killing vector field with respect to g. **PROPOSITION 3.2.** Let M be an (ε) -sasakian manifold. then the sectional curvature for plane sections containing ξ are equal to 1 or -1 at every point on M.

PROOF. Let X be an unit vector field on M and $X \perp \xi$, then from (19) we have

$$R(\xi, X)\xi = \bigtriangledown_{\xi} \bigtriangledown_{X} \xi - \bigtriangledown_{X} \bigtriangledown_{\xi} \xi - \bigtriangledown_{[\xi, X]}\xi$$
$$= -\varepsilon \bigtriangledown_{\xi} (\phi X) + \varepsilon \phi([\xi, X])$$
$$= -\varepsilon (\bigtriangledown_{\xi} (\phi X) - \phi(\bigtriangledown_{\xi} X - \bigtriangledown_{X} \xi))$$
$$= -\varepsilon ((\bigtriangledown_{\xi} \phi) X + \phi(\bigtriangledown_{X} \xi))$$

From Lemma 3.1, we get

252

thus we have

$$R(\xi, X)\xi = -\varepsilon\phi(\bigtriangledown_X \xi) = \phi^2 X = -X$$
 then
 $g(R(\xi, X)X, \xi) = -g(R(\xi, X)\xi, X) = \pm 1$

From (18) and (19), let any $X, Y \in \Gamma(TM)$ and $X, Y \perp \xi$ we have

$$R(X,Y)\xi = \nabla_X \nabla_Y \xi - \nabla_Y \nabla_X \xi - \nabla_{[X,Y]}\xi$$

= $\nabla_X (-\varepsilon \phi Y) - \nabla_Y (-\varepsilon \phi X) + \varepsilon \phi[X,Y]$
= $\varepsilon ((\nabla_Y \phi)X - (\nabla_X \phi)Y)$
= $\varepsilon (g(X,Y)\xi - \varepsilon \eta(X)Y - g(X,Y)\xi + \varepsilon \eta(Y)X)$
= $\eta(Y)X - \eta(X)Y = o$

Then, by Proposition 3.1; 3.2, we get the necessary condition of Theorem 2.

Conversely, first, we define a 1-form η and a tensor field of type (1.1) by

$$\eta(X) = g(X,\xi) \qquad \qquad \phi X = - \bigtriangledown_X \xi$$

We know from [4] (ϕ, ξ, η, g) be an almost contact metric structure, satisfying

$$\begin{split} \phi^2 &= -I + \eta \otimes \xi, \qquad g(X, \phi Y) = d\eta(X, Y) \\ g(\phi X, \phi Y) &= g(X, Y) - \eta(X) \eta(Y) \end{split}$$

Let $\bar{\xi} = \varepsilon \xi, \bar{\eta} = \varepsilon \eta, \bar{g} = \varepsilon g$, then

$$\bar{\eta}(X) = \varepsilon \bar{g}(X, \bar{\xi}), \qquad \phi X = -\varepsilon \bigtriangledown_X \bar{\xi}$$
$$\phi^2 = -I + \bar{\eta} \otimes \bar{\xi}, \qquad \bar{g}(X, \phi Y) = d\bar{\eta}(X, Y)$$
$$\bar{g}(\phi X, \phi Y) = \bar{g}(X, Y) - \varepsilon \bar{\eta}(X) \bar{\eta}(Y)$$

Thus $(\phi, \tilde{\xi}, \tilde{\eta}, \bar{g})$ be an (ε) -contact metric structure.

Now we show that $N^{(1)} = 0$, from condition (3) of Theorem 2, we obtain

$$(\nabla_X \phi)Y = (\nabla_Y \phi)X, \qquad \forall X, Y \perp \bar{\xi}, \quad \text{thus}$$
$$N_{\phi}(X,Y) = [\phi,\phi](X,Y)$$
$$= (\nabla_{\phi X} \phi)Y - (\nabla_{\phi Y} \phi)X + \phi[(\nabla_Y \phi)X - (\nabla_X \phi)Y]$$
$$= (\nabla_{\phi X} \phi)Y - (\nabla_{\phi Y} \phi)X \qquad \forall X, Y \perp \bar{\xi}$$

By using Lemma 3.1, we get

$$N_{\phi}(X,Y) = -2\tilde{g}(X,\phi Y)\bar{\xi}$$

then

$$N^{(1)}(X,Y) = N_{\phi}(X,Y) + 2\bar{g}(X,\phi Y)\bar{\xi} = 0$$

If $X \perp \overline{\xi}$, we have by Lemma 3.2

$$N^{(1)}(X, \overline{\xi}) = N_{\phi}(X, \overline{\xi}) = \epsilon \phi(L_{\overline{\xi}}\phi)X = 0$$

Thus, for any vector field X, Y on $M N^{(1)}(X, Y) = 0$

Hence, the (ε) -contact metric structure $(\phi, \bar{\xi}, \bar{\eta}, \bar{g})$ is normal, that is, M is an (ε) -sasakian manifold with an (ε) -sasakian structure $(\phi, \bar{\xi}, \bar{\eta}, \bar{g})$.

Theorem 2 can be improved.

THEOREM 2'. In order that a (2n + 1)-dimensional Riemannian manifold M is (ε) -sasakian manifold, it is necessary and sufficient that the following two conditions are satisfied

- (1) M admits a unit killing vector field ξ
- (2) $R(X,Y)\xi = \eta(Y)X \eta(X)Y$ $\forall X,Y \in \Gamma(TM)$

References

- BEJANCU, A. and DUGGAL, K.L., Real hypersurface of indefinite kaehlerian manifolds, Internat. J. Math.& Math. Sci. 16(1993), 545-556.
- [2] HATAKEYAMA, Y., OGEWA, Y. and TANNO, S., Some properties of manifolds with certain metric structure, Tohoku Math. J. 15(1963), 42-48.
- [3] KOBAYASHI, S. and NOMIZU, K., Foundations of differential geometry, vol.II (1969).
- [4] BLAIR, D.E., Contact manifolds in Riemannian geometry, Springer, Lecture Notes in Math. vol.II 509(1976).
- [5] SASAKI, S. and HATAKEYAMA, Y., On differentiable manifolds with certain structure which are closely related to almost structure, *ibid* 13(1961), 281-294.
- [6] YANO, K. and KON, M., Structure on manifolds, world scientific, Singapore, 1984.