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ABSTRACT. We will prove an existence result of positive solutions for an asymptotically planar system

of two elliptic equations. It will be used as main tools for a Maximum Principle and a result on

Bifurcation Theory.
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1. INTRODUCTION
In this paper we will prove the existence of positive solutions for the elliptic system

AU A(z)U + F(z,U) in ft, U 0 on 0ft (1)

( a(x) b(x) )where ft C Rv is a bounded smooth domain, A(x) c(z) d(x) whose entries are continuous in Q,

0
v 0 -A v Av and F(x,U)= g(x,u,v) with

f, g" x (R+)2 R locally lipschitzian continuous satisfying.

f(x, 0, 0) > 0 or g(x, 0, 0) > 0 for all x E ft (2)

and there is a positive constant C so that

0 <_ f(z, u, v), g(z, u, v) < C for all (z, u, v) E x (IR+)2. (3)

Condition (3) says that the function

’(x, U) (a(z)u+b(z)v+ f(z,u,v))() + d() + (,,)
is of asymptotically planar type. Since we are concerned with the existence of positive solutions we will

suppose through this work that system (1) is cooperative, i.e., b(z) and c(x) are both nonnegative for all

x E ft. This cooperativeness is imposed in order we may use a Maximum Prmctple (MP m shor0 In
particular we will deal with the one due to the author of this paper in collaboration with M A S
Souto ]. Using this (MP) and a result on Bifurcation Theory we prove the following:
THEOREM 1. lfa(x) < A1, d(x) < AI and ifeither
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(i) laloo <_ Idloo and 1 < 2A

or

2A
21al + Ibl + Icl

then problem (1) possesses aposinve (classical) solution

Here [. 1 denotes the usual sup norm, that is, [u[ sup [u(x)[ and A1 is the first eigenvalue of

A in n under Dinchlet boundary condition.

To tackle this theorem we proceed as follows: Since f and g are both defined only for u, v > 0 we

ought to consider the extensions off and g, respectiveley

fl (X, Zt, V) f(x, [Ztl, Ivl) and

now defined for all (x, u, v) 6 x R We now carry on by setting

0 (o b(x))0

Fixing these notations we are going to pay attention to the following nonlinear eigenvalue problem

LU=A[B(x)U+;(x,U)] in n,u=0 on On (4)

where A > 0 is a real parameter and it will be proved the existence of a continuum :E C R+ x [CC]
of solutions (A, u) of (4) that begins at (0, 0) and extends beyond the line {1} x [C’C] arising a

solution of (1) which in view ofthe (MP), should be positive.

As we will show after proving Theorem the motivation in studying problem (1) came of the scalar

one

Au f(x,u) in n, u o on Oft, (5)

where f has a sublinear behavior.

2. PRELIMINARY RESULTS
In order to establish the (MP) we begin by fixing some notations. Let X be a Banach space ordered

by the positive cone K C X and _," X X a linear operator. By a (MP) to problem

U LU + F, U e X, (6)

we mean the statement F >_ 0 (i.e. F e K) imply U _> 0 whenever that U is a solution of (6).
PROPOSITION 2 (Maximum Principle). Let L" X X be a positive linear compact operator

(positive means (K) C K). Then (6) satisfies the (MP) ifthe condition below holds true

{u e x, e [0, ], u f,v} u 0. (7)

Now we shall focus our attention on the problem

LU B(x)U + (x,U) in ft, U 0 on On, (8)

to prove the following:

THEOREM 3. Ifa(x) < A1, d(x) < AI and ifeither

(i) laloo < Idl and 1 < 2A1
21all= + Ibl= + Icl

or
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(ii) Idl <_ lal and 1 <

then every solution of(8) ispositive and so ts a solution of(l).
PROOF. We first observe that the extension -ff(x,U) is also normegative. Second we

noticethattheoperatorL=(-A-a(x) 0 )0 A-d(z) has an inverse

L=((-A-a(x))
-1 0 )0 _A_d(x))_l [C(--)]2 [C(’0)] which is compact and positive in view

ofa(x), d(x) </1 in f2 So we will analyze uniqueness for the problem

U tL-IB(x)U, U
_
[C(-] :, E [0,1]

that is equivalent to

zx () t(.).
ZXv- d(z)v tc(z)u

Zt =V’-0

in f
in f
on 012

(9)

By multiplying both sides of the first equation in (9) by u and both sides of the second one by v and

integrating by parts we obtain

and

f IVvl fc(x)uv+ fd(z), 
Since a, b, c and d belong to C() one gets, thanks to both Holder’s and Pioncare’s inequalities,

Ibl

and

Summing up these two inequalities and assuming that la[ < Idloo one has

f + f v,’ [f
Since 1 < 21dl(R)+lbl/lel(R) we conclude that U 0. We arrive at the same conclusion by assuming

assumption (ii). Thus system (8) enjoys the (MP) and in view of F(x, U) > 0 we have U > 0 and so it

is a solution of (1). I"1

We now enunciate a proposition, due to Rabinowitz [5], which is another tool in proving Theorem 1.

PROPOSITION 4. Let X be a Banach space and suppose that T R+ X X is a continuous

map. Then the nonlinear eigenvalue problem u T(X, u) possesses an unbounded contmuum of
solutions meenng (0, O) R x X, gin addition, we suppose T(O, u) Ofor all u X.

3. MAIN RESULTS AND REMARKS
We start this section proving Theorem 1.

PROOF OF THEOREM 1. Set X [C(’-)] endowed with the usual norm IUIoo lul +lvl.
Hence X is a Banach space and, as we said before, L-1 X X is linear, compact and positive. So

problem (4) is equivalent to the following functional equation in R+ X:
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U A[L-1A(x)U / L-I"(x,U)], A >_ 0, U e X, (10)

where (x, U) is the Nemytskii operator associated with the function , i.e., for each U E X one has

k(., u(. ))() (, u()).

Since L-]A and L-I are compact operators we are able to conclude the existence of an

unbounded continuum 5] of solutions of (10) beginning at (0, 0) E R+ x X. If (A, 0) E then A 0

because f(x, 0, 0) > 0 or g(x, 0, 0) > 0 Plainly (0, U) E E implies U 0. Thus :E meets

{0} x [CC] and R+ {0} only at (0, 0). Note that bootstraping these solutions, that at first sight
belong only to [CC)] 2, we obtain classical solutions.

It is worthy to say that hitherto we cannot affirm that E contains positive solutions. In spite of this

we can say that a piece (or perhaps pieces) of E contains only positive solutions. Indeed, if A _< 1 we

may prove, reasoning as in the proof of Theorem 3, that every solution U of problem (10) is positive. It
rests to show that in fact reaches A 1

Since E is unbounded it may be unbounded with respect to A, or with respect to U or with respect to

both A and U. If E is unbounded in A then it crosses the line { 1} x X and so we find a solution U ofthe
problem (4) and in view of assumptions (i) and (ii) of Theorem 3 is positive and so is a solution of (1).
We now suppose that if (A, U) E :E then A _< 1. Hence there is a sequence (A,, U,) 6 :E with A, _< 1

anl [U, [oo oo Thus

LU, A[B(x)U, +(x,U,,)] in f, U, 0 on Off.

Setting W, we obtain

F(x,U,)LW . B(z)W + IU.I in S, W. 0 on

e,i. to. .u. if .. obt. . - 0 e [0, ], W. - W i. [C]
zw. 0s()w z-D(Z/- [C(] ", h, D(Z)= {U e [C]"; ZU e [C(]" .d

U 0 on Of2}, is closed one has that W D(L) and

LW oA()W in f2, W 0 on

sa.s w. - w i [c]" ,d W.I t. WI , i.., W is a .o.t,d so.tion ofthe

above problem. But, in view of (MP) and A0 _< l, W 0 which is absurd. Thus E crosses { l} X
and, by Theorem 3, such solution is positive and the proofofTheorem is over. !-I

REMAlK 1. The proof of Theorem rests heavily on the existence of a (MP) like the one

contained in We must observe that this (MP) is valid for a more general elliptic operator. Indeed, if

we consider uniformly elliptic operators in the divergence form

(the symbols of summation are implicit in the expressions) where coefficients are regular enough,
k a, and setting A] (Lk) as being the first eigenvalue of (Lk,H(f)), the system

U A(x)U / F(x) in f, U 0 on

where= ( LIO L20) ’enjysthe(MP)if
(B(),)< ,(L)( +I)
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for all (1,2) and x E f Here (., .) is the usual inner product in R and B(x) c(z) 0
Note that the above condition provides the uniqueness required by the (MP) in ]. So Theorems and 3
remain valid, with slight modifications, if system (1) is considered with -A substituted by the
nonselfadjoint operators L1 and L2.
REMARK 2. At the outset of our motivations in studying problem (1) we had considered the

following

N N

Lu := at.(x)Du +E at(x)Du f(x, u) in f2, u 0 on 011 (11)
z,.7= z.3=

where L is a second order uniformly elliptic operator in fl with real smooth coefficients satisfying

% a/ in f, for all 1 < i, j < N, and f" f x R+ R+ is a sublinear nonlinearity. It is to say,
setting

ao(x) lim
f(x, t)

t-o+
aoo(x) limsup

f(x,t)
(12)

one must have

,kl(a0) < 1 < Al(aoo) (13)

where A1 (at), 0, cxD, is the first eigenvalue ofthe linear eigenvalue problem

Lu Aat(z)u in f, u 0 on 012.

Condition (13) says that we are working with a sublinear problem, i.e, in case, for instance, a0 and

aoo are constants the nonlinearity f begins, above the straight line ,Xl t and at the end it remains below the
same line.

In Brezis-Oswald [2] the authors consider L A and use Variational Methods by exploring the

selfadjointness of A and f is not necessarily a smooth function. In fact ao(z) and aoo(x) may take
values + oo and c, respectively, so we address the reader to Section 3 of[2] for the precise meaning
of(13).

In de Figueiredo [3] problem (11) is studied under condition (13) where L is a selfadjoint operator
more general than A but f is a C-function, 0 < a < 1, and f(x, t) + Kt is nondeereasing in for
some K > 0. In this case the sub and supersolution method is used.

If L is not necessarily selfadjoint problem (11) was studied by Costa-Gonealves [4] under condition

(13), still using the sub and supersolution technique. In the works quoted above the authors always show
existence ofa positive solution as well as give sufficient condition for uniqueness.

This scalar problem arises a very natural question: How can we formulate a sublinear problem like

before when we take a system into account9

We think that the best motivation towards a more general situation is to consider the biharmonic

problem because it brings up for attention a very simple system and from it we would deal a more general
sublinear problem. More precisely we first analyze the simplest biharmonie problem

A2u mu + g(u) in 12, u Au 0 on Of, (14)

that is, the biharmonic equation under the so called Navier boundary conditions. Here rn is a positive

constant. Settingv=-Au, A=( 0 1)G(U)=( 0 )rn 0 g(u) we get the system

AU AU + G(U) in f, U 0 on Of. (15)
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Taking g a bounded function then f(u) mu d- g(u) would be sublinear if it begins at 0 zero

above Air and remains below Air for large enough. Note that this is the counterpart of condition (13)
when we are dealing with A Observe that A] is the first eigenvalue ofA2 in f under Navier boundary
conditions and the situation described above occurs, for instance, if#(0) > 0 and m < ,].
REMARK 3. Now we are going to analyze the condition given in Theorem for the system (15)

In this ease one has that 1-rn < ,, is a sufficient condition in order system (15) enjoys the (MP).
Next we will show that this condition leads to a sublinear problem related to (14). Let us suppose

that < A
a) If rn 1 one has (m- 1) > 0 which implies (1+4f > rn and since ’1 > we get

A > (1+4) > m and so we have a sublinear problem.

b) If rn 1 then /1 > 1 and hence , > A1 > 1 m. In this ease we still have a

sublinear problem.
Therefore we believe that conditions (i) and (ii) are two kinds of sublinearity conditions when we deal

with a system oftwo equations.
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