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1. INTRODUCTION.
In [3], Kramer derived a sampling theorem which generalizes the Whittaker-Shannon-Kotel’nikov

sampling theorem [6, 8, pp. 16-17]. It states that
THEOREM 1.1. Let I be a finite closed interval. Let K(x,t) IC C be a function such

that K(z,t) . L-(I), Vt ( C. Let {t}ez be a sequence of real numbers such that {g(x,t)}ez
is a complete orthogonal set in L2(I). Let g

_
L2(I) and suppose that

I(t) [ g(, t)g() d.
J

Then

where

f(t) f(t)S(t),
a.z

S(t) f K(x,t)K(x,t)dx
ilK(x,t)ll2

DEFINITION 1.1. A function K(z,t) I C C is called a Kramer-type kernel

if K(x,t) E L(I), Vt E C and there exists a sequence {t} C C such that, {K(x,t)} is a

complete orthogonal set in L(I).
The point now is that, where can one find Kramer-type kernels? An aswer to this question

is given by Kramer [3] as follows:

Consider the self-adjoint boundary value problem

Ly EP,(x)y(’-’)(x) ty, x e I [a,b], (1.1)

j 1,2,..., (1.2)

Typeset by fl..A-TEX
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Assume that u(x, t) is a solution of (1.1) such that the zeros, {t }, of Bj(u(x,t)) are the same V3.
Thus, [3], the zeros of Bj(u(x,t)) are the eigenvalues of the problem (1.1)-(1.2), and {u(x,t)}
is a complete orthogonal set of eigenfunctions. Then

THEOREM 1.2. Let L(y) ty, B(y) O, j 1,..., n, be a self-adjoint boundary value

problem on I. Suppose that there exists a solution u(x,t) of (1.1) such that the set of zeros

E, {t} of tS,(u(x,t)) is independent of i. Let g

_
n(I). If

f(t) [ ,(, t)g()

then, f has the representation

where

s(t) L (,)(,)
i1(, )11,

Kramer’s theorem stated above is not always true, since one can find a boundary-value prob-

lem of the type (1.1)-(1.2) and a solution u(x,t) such that Bj(u(x,t)) has the same zeros {t},
Vj, but neither {t is the set of eigenvalues, nor {u(x, tk)} is the complete set of eigenfunctions.

For example, consider the boundary value problem

B,(y) y(O) y(r) O, B(y) y’(0) y’(Tr) 0. (1.4)

We have, u(x, t) cos v/ cos v/x is a solution of (1.3) with

B(u) cosv/g(1- cos v/Tr), B(u) -vcos sin v/r.

Obviously B(u),B2(u) have the same set of zeros, {tk k2}’=o, but neither {t}’=0 is the

sequence of eigenvalues, nor {cos--coskx}’=o is the complete set of eigenfunctions. So it is

not practical to discuss the existence of Kramer-type kernels associated with problems of type

(1.3)-(1.4), i. e., when the eigenvalues are not necessarily simple. When the eigenvalues of the

problem are simple, many Kramer-type expansions associated with the boundary-value problems

were derived [1, 2, 9].
There are two ways introduced by Zayed [7, 8] to obtain sampling; series associated with

problem (1.3)-(1.4). The first one [8, pp. 50-52] is given by taking the kernel of the sampled

integral transform to be

Therefore, if

for some F E L=(0, 7r), then

where

b(x, t) A cosVx + B sin Vx.

l(t) F()(z, t) dz,

f(t) f(0_) sin(nv/) B 2 sin(v/)} { v/sin(Trv)+ v/ +a a
(t-4k)

(t 4k) + b? A (-4k) sin(vq)
(t-4k-)

B (2k) sin(zrv/)+ (t-4k) J

a F(z) cos kz b _2 F(z) sin kz dx.
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The last series is not a sampling expansion of f(t) since the coefficients ak and bk can not be

uniquely expressed in terms of the sampled values of f at the eigenvalues. If we denote the

Hilbert transform of f by , where

we obtain

F(x)(A sin vx B cos v/x) dx,

where r B/A.
The second way is given by taking the kernel of the sampled integral transform to be

O(x,t) P(t)G(x,o,t),

where G(x,, t) is the Green’s function of (1.3)-(1.4), 0 is chosen in [0, r] as in [7], and P(t) is

the canonical product

-(t)P(t) = I t 4k2, k 1,2,....

Then, for

F e L2(0, 0, we have

f(t) F(x)4(x, t) dx,

P(t)f(t) f(t,) (t- t,)P’(t,)
k--O

f(0)
2 sin(v) 4(_l)kv sin(vf)

-vq + /(t) .(t-4)"

As we have en there is no Kramer-ty reprentations ciated with problem (1.3)-(1.4).
In th article we u another version of Kramer’s theorem, Lemma 3.1, so that we can

obtain a new Kramer-type mpling reprentation ciated with second order bounda-lue
problems which may have multiple eigenvalues.

2. PRELIMINARIES.
Consider the second-order eigenvalue problem

Ly y" q(x)y -Ay, x 6 I [a,b], A 6 C,

U,(y) a,,y(a) + a,2y’(a) + B,,y(b) + o.y’(b) O, 1,2, (2.2)

where

a,,, fl, are real constants, and q(x) is a continuous real-valued function on [a, hi.

(2.3)
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Let u, v E C2(a, b). Then the Green’s formula for this eigenvalue problem is

az U,V, + UV + UV, U,V,, (2.4)+

where Uj, _< j _< 4, are linearly independent linear forms of u(a), u’(a), u(b), u’(b), and Vj, _<
j _< 4, are linearly independent linear forms of v(a),v’(a),v(b), v’(b). Here V 0, j 1,2,
are the adjoint boundary conditions of (2.2), cf. [5]. Moreover problem (2.1)-(2.2) with (2.3) is

self-adjoint, [5], and has at most countable set of real eigenvalues with no finite limit points.
Let {,(z,A),(z,A)} be the fundamental set of solutions of (2.1) defined by

,(a,A) 1, ’,(a,A) 0,
(2.5)

(a,A)=O, (a,A)=l.

Any solution of (2.1) can be written as

(,) c,, (x, + c(z, ),

where cl, c2 are arbitrary constants. The function (x, A) is an eigenfunction of the self-adjoint

eigenvalue problem (2.1)-(2.3) if it satisfies (2.2), i. e., when the system

u(,) u() c

has a nontrivial solution. This happens when

A(A) U’(I)U2(,) U()U’()[ =0.

That is the roots of A() are the eigenvalues of the problem. The eigenvalues of problem (2.1)-
(2.3) are not necessarily simple. Assume {A,,, A,,}, {A3,,} are the sequences of double and

simple eigenvalues respectively. Let X,(x, A), 1, 2, 3, be the functions

x,(x,) ,(z,), x(z,) (z,),) + c(),(z,),

and

,(,) (,) + u(,(,)) u,((,))

where

() f(,),(, )
i1,(, )11

and a a constant chon such that X(x, A.,) 0, Vk, k 1,2,...
We can see that {X,(x,A,.,),X(x,A.,)} and {X(x,A.,)} are the quences of orthogonal

eigenfunctions coesponding to {A, A,, }, {A., respectively. Th ment can be eily

derived usg the fact that an eigenvalue A* of problem (2.1)-(2.3) is simple if and only if one of

the entries of A(A*) does not vanh.

Now aume that the zeros of A(A), i.e. the eigenlues {A,.,}, 1,2,3, have the ymptotic

behaviour A,., O(k) k . The, for example, tes place if the boundary conditions

are regular [5, p. 64]. Al sume that the multiplicities zeros of A(A) are at most two.

3. A SAMPLING THEOREM.
In th section, we state and prove the main threm of the paper. Theorem 3.1 below

a sampling theorem ciated with a cond-order boundary-lue problem whose eigenvalues
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are not necessarily simple. We start our study by the following Lemma, taken from [1]. It is a

new version of Kramer’s theorem.
LEMMA 3.1. Let {A,. },= be sequences of numbers. Let K,: In, b x C C, 1,2,..., n

be n functions such that K,(z,A) E L2(a,b), VA E C, and that tJ,"= {K,(z,A,,)} forms a

complete orthogonal set in L2(a,b). Let H, be the subspace generated by {K,(z,A,.)},
1,2,... ,n. Then L(a,b) E,=, BH,. Assume that f ,%, Bf, L(a,b), f, . H,, and

F(A) Z F,(A) f,(x)K,(x,A)d.x. (3.1)
,=1

Then

where

F(A) F, (A,,)S,(A), (3.2)
t----1 k-----I

S..(,k) f K,(x,A)K,(x,A,.,.) dx
(3.3)

flK,(=,,,,,,)l=
and v, dim H,.
THEOREM 3.1. Let H, be the subspace generated by {X, (x, A,.)}, 1, 2, 3, and let

L(a,b) , BH,. Let f ,, Sf, L2(a,b), f, H,. Assume that

F(A) F,(A) f,(x)x,(x,A)dx. (3.4)
,=i

Then F admits the following representation

F(A) F,($,.,) (A- , ,)C’,.,(A,.,)
1=1 k=l

where

G,.,.(A) [X,(X,X),X,(x,A,..)], i= 1,2,3,

and [u, v] uv’-u’v. The three series converge uniformly on any compact subset of the complex
plane. Moreover

Ca.:(A) G(A) 1 (3.6)
I=1 k=l

if zero is not an eigenvalue. These products must be multiplied by $ if zero is a simple eigenvalue,
and by X2 if zero is a double eigenvalue.
PROOF. Setting

G,.(.X) [XI(x,A)Lx,(x,A,.,.) X,(x,A,..)Lx,(x,A)] dz, 1,2,3,

and integrating by parts, we obtain

C,.,(A) [xICz, A), X,(z,A,.,)] t’,,, i= 1,2,3. (3.7)

On the other hand, using (2.1), one gets

C,.,(X) CA- A,..) X,(X,A)X,(X,A,.,)dx

and therefore

(3.8)

(3.9)
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Since f, E H,, i-- 1,2, 3, then

where

c,, f,(x)x,(x,A,,) dx F,(A,,). (3.10)

Using Parseval’s equality, we obtain

F,() $,()x,(z, )

=, IIx,(-, )ll

C,,(X)
1 2, 3,F,(A,.) (A A..,)G’. (A..)

(cf. (3.8), (3.9), and (3.10)). The proof of the uniform convergence can be established in [8,
pp. 4].
We now show that G3,($), for k 1, 2,..., h no zeros other than the eigenlues. We use

t’he same technique of [2]. om (3.7) it clear that each ,., 1, 2, 3, k 1, 2,..., a zero

of G3.(A). Suppo " is another zero of G,(A). It will be shown that " an eigenvalue of

(2.1)-(2.2). From (2.4) and (3.7), we obtain

G ,X U V, + + U,,V

for all A, where the U3, 1 < j _< 4, are linear forms in x3(a, A), X’:(a, A), xa(b, A), X’a(b, A), and the

V, 1 < j < 4, are linear forms in Xa(tt,.a,t:),X’3(a, A3,k.),X.3(b,,,3,k),)(.t3(b, A3,#.). Since )(3(X,,a,E)
is an eigenfunction, then

V,(x(=,:,,,,)) o, j ,2.

Obviously Ul(X3(X, ))= {A()), U2(X3(x, ) A()k), hence

(3.11)

where

v(x(=,:,.)) [V,(x(=,,x.,,))+ V(x(=, .,,)).].
Since A" is a zero of G3,k(A), then C3,k(A’) A(A)V(x:(x,A:,#.)) 0. Now assume that

V(X3(X, A3,#,)) 0. Since Y(x3(x,A:,.)) is independent of A, by (3.11), G3,,(A) =- 0. Thus G3,,(A)
is identically zero, which contradicts the fact that G’3,,(A3,k) =/= 0 (cf.(3.9)). So, V(X:(x,A,.))
is not zero for all eigenvalues. Thus we have A(A) 0, and so A" is an eigenvalue of (2.1) and

(2.2).
Finally we show that G3.,(A) may take the from (3.6). Indeed by Hadamard’s factorization

[5, 55] wetheorem [4, p. 24] for entire functions and by noting that G3,,(A) is of order p. can

write

c,,,(,)

(the order of G3, ). Thus P(z) c(k)where P(z) is a polynomial whose degree does not exceed ]

is a constant depending only on k. The convergence of every product in G3,k(A) is guaranteed

since the eigenvalues behaves like O(k-) as k oc. Obviously

C.,,(.) C(,)
c,.,, (,.,,) c,(,)
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so without loss of generality we may assume that Ga,(A) G(A). This completes the proof of

theorem 3.1.

In some cases the three-series summation (3.5) can be reduced, (see examples 1, 2 below)
into a two-series one. The first is written in terms of F(A,,k A2,k) and the second in terms of

Fa(Aa,). In such cases we may need to reform the integral transform (3.4) into a suitable one

as we see in the following corollary
COROLLARY 3.1. Assume that

G,,.(A) #(k)h(A),

where # is a function depends only on k and h is an entire function depends only on A. Let

F=(A) f:(x)._(x, A) dx,

whr .(=,,) h(,)X=(=,),). H,, for

F(A) F (A) + F=()) + F(A),

we have

k=l k-I

PROOF. Instead of G.(A), we consider

G2,(A) (A- A2,.) .:(x,A)X2(x,A=,,)dx h(A)G2,(A),

and G2,,(A2,, h(A2,,)G=,,(A=,,). Then

C,() h()C,() (,) C,,()
,=,(=,) h(=.)C’=, (=,,) (=,) C’,, (=,,)

and

4. EXAMPLES.
EXAMPLE 4.1. Consider the periodic eigenvalue problem

-V" Ay t2y, 0 _< z <_ r, (4.1)
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u, () (0) () 0,
(.2)

v() ’(0) ’() 0.

This is a regular self-adjoint eigenvalue problem. The fundamental set of solutions of (4.1)
subject to conditions (2.5) is

Thus

(,)) ot, e(, )
sin tx

A(A) 1 cosTrt
sin rt 1 cos rt

4 sin
zrt
2"

The eigenvalues are A 4k, k 0,1, 2,..., where A 4k, k 1, 2,... are double eigenlues
and the corresponding eigenfunctions are

{cos 2kx, sin 2kx }2k

nd A 0 is the only simple eigenvalue with the eigenfunction Ca(x, 0), where

Hence 3(x, 0) r. Now

t
COSX tI cos 7rt

+cos tx ---" sin zrt 1 cos rt

sin t(r x) sin tx
cost( x) + + cos tx.

So

t
G(,\)=tsinrt, G2(A)=

sinTrt
G3(A)=47rsin

2

a’,,,(,,) 7’ a’,,,(,,) g, a’,0(0) ,
where A., ,k., 4k. Let L*(a,b) , $H,, where H, H, H are the subspaees gener-

ated by

{cos {sin2kx} ,{}2kx}=, 2k =
respectively. Let F(A) F, (A) + F(A) + F(A), where

F,(A) /,(x),(x,A), f, 6 H,, i= 1,2,3.

Then
2tsinrt 8k sinrt 4 sin*(t) (4.3)F() ]F(4’),( 4’) + ]F’(4),t( 4’-) + (0) ,,t---.

k=l k=l

In the following we see that the form (4.3) can be reduced into another form which is similar to

those resulting in the case of simple eigenvalues by redefining the sampled integral transform as

described in the above corollary. Indeed, e’,*() A h(A) is entire. Let
G,()

F(,) F (A)+ F(,) + F3(A),

where

F() /(z);(, ) d.
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Then, noting that F3(0) F(0), we have

2t sin rt
F(A) l(4k) r(A

k=l

+ P(o) 4i (t)

EXAMPLE 4.2. Consider the anti-periodic eigenvalue problem

-y" Ay t2y, 0 <_ x <_ zf, (4.4)

u, (v) v(0) + () 0,
(4.5)

u(v) v’(o) + v’() o.
This is a regular self-adjoint eigenvalue problem. For the same fundamental solutions in the
previous example, we have A(A) 4 cos . The eigenvalues are {(2k- 1)2}=, all of them are

double, their corresponding eigenfunctions are

Now

and

sin rt
G,,k(A) -t sin nt,

t

G,,(Ax,k) , G2,k(A2,)= 2(2k- 1)2.

For the corresponding integral transform, F(A), defined as in the theorem, we get the following
sampling representation

-2t sin rt
F(A) F, ((2k 1)2) r(A (2k 1) 2)

k----1

-2(2k I)2 sin
+ F2((2k 1)2) rt(A (2k "-""

Also we have, G,,()
a2, (4) i h(A). Let

Hence

F(A) F(A) + F2(A), F(A) f()A(, A) d.

(,k)- ((gk- 1)2)
--2t sin rt

7[(- (2k- 1)2)

REMARK. Unlike the case of simple eigenvalues, as the above two examples show, we do

not have the relations G,,(A)= cG,(A), 1,2, where

a,(A)

if zero is not an eigenvalue,

if zero is an eigenvalue,

and c is a constant depending on k. In fact it can be easily seen that G,, G2., in the previous

examples, have zeros more than those of G,, G2.
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