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1. INTRODUCTION.

Kadell [S] used the prohabilistic approach to prove Ramanujan’s ,, sum. Ismail [6] gave the

most natural proof of Ramanujan 1bl sum that extended to multivariate hypergeometric functions.

Some algebraic and other techniques are used to provide simple proofs of the established identities,

see [1, 4, 5, 6, 8, 9]. In this paper we have used probabilistic approach to derive a series representation

[2, p. 100] of the Macdonald function. Some applications of the result are discussed and an open

problem is posed.

2. MAIN RESULTS.

LEMMA 2.1. For Re(z) > 0

i:T’Ko(z) 9[o tn exp(-z cosh t) cosh ct dt

0c" f0ot exp(-z cosh t) sinh at dt

if n is even,

if n is odd.

PROOF. It follows from the integral representation [3, p. 358]

K,(z) exp(-z osh t)cosh(at)dt,

of the Macdonald function Ko(z), Re z > 0.



464 M.A. CHAUDHRY AND M. AHMAD

THEOREM 2.1. Let 0 < < and Re z > 0. Then,

Ko(2zv/ t) (1 t)’/2 K,,,,(2z)(zt)’/r!
r----O

PROOF. Let us define the function I(c,/) by

I(,) -xp(- -)e, - < , < , > 0.

Then, the function defined by

f(z) (I(o,))-lzt’-’ exp(-z Bz-’), z > O, /> 0

(2.1)

(2.2)

or

It is known [3, p. 340] that

l(c, ) 2/2K(2V/r),
From (2.7) and (2.8) we get

I(a,(1 t)) I( + r,f) (1 t).
- <a < c, Re > 0.

K(2/fl(1 -t)) (1 t)’# , f’/Ko+,(2f).
r----O

The substitution z in (2.9) yields the proof of the theorem.

In particular when 0 and z in (2.9) we get

K0(2z/il -t)) _, {z"K,.,(2z)} n’

(2.7)

(2.s)

(2.9)

(2.10)

is the probability density function (pdf). It may be noted that the pdf (2.3) has appeared in an

earlier work. This is the limiting case a 0 of theorem 1.11 in [7].
The r-th non-central moment of the random variable X having (2.3) as its pdf is given by

E(X) x"f(x)dx
I(a + r, fl) (2.4)
I(oe,)

The moment generating function (mgf) of f(x) is given by

x-’ exp(-(1 t)x x-)dx, 0 _< < 1. (2.5)E(et) etf(x)dx
I(o, )

Substituting (1 t)x v in (2.5) and simplifying we get

I(a, B(1 t)) (2.6)E(et:)
(1 t)’I(a,)"

The relation

S(et)=_,S(X’).
r--O

yields,
I(a,(1 t)) I(( + r,f) t"

(1-t)’I(a,B) ,.=o I(a,) r!

(2.3)
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which shows that Ko(zlv/’i-X-t) is the generating function of .(z/2)’Kn(z), n 0,1,2,3,....

An immediate consequence of the theorem is the following result which provides the closed form

solution to the representation of the first derivative with respect to the order of the Macdonald

function at the integral values of the order. The problem remains open for the higher derivatives and

the other values of the order of the function.

COROLLARY 2.1. For Re(z) > 0,

0
[K,(2z)la=n

1 n! (z)"-K,_j(2z)
Oa 2 z j(n j)’

PROOF. Differentiating both sides of (2.1) with rpect to a we get

0
1( )I(,,() (.)0[(] ( )z N {g,,()} +

However, it follows from the lena that

[g(ll. 0. (.0

Therefore, substituting 0 in (2.10) and using the series reprentation of ln(1 ) d (2.11)
get

0 (zt)r(tt
=0

[g+(z)]=o + +"" + --+ =0
Z(2) (t)

Equating the coefficients of t" in (2.12) yields the desired proof.

COROLLARY 2.2. For Re z > 0,

I n, z"-’K_,(2z)exp(-2z sh t) sinh(nt)dt
j(n j)’3=1

PROOF. This follows from the lena and Corrollary 2.1.

In particular when n 2 we get

exp(- cosh )sinh()e [K() + K()], (.14)

which do not sm to be known in the literature.

We state here an open problem the solution to which will have Nr-rching eonsequenc in the

genereliation of the inverse Geussian distribution.

STATEMENT OF THE OPEN PROBLEM. Find the relationship of with the ther

Nnctions for n > 2.
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