ON A NEW ABSOLUTE SUMMABILITY METHOD

W.T. SULAIMAN

Department of Mathematics College of Science University of Qatar P.O. Box 2713 Doha, QATAR

(Received July 1993 and in revised form March 21, 1997)

ABSTRACT. A theorem concerning some new absolute summability method is proved. Many other results, some of them known, are deduced.

KEY WORDS AND PHRASES: Absolute summability. 1991 AMS SUBJECT CLASSIFICATION CODES: 40C.

1. INTRODUCTION

Let Σa_n be an infinite series with partial sums s_n Let σ_n^{δ} and η_n^{δ} denote the *n*th Cesàro mean of order $\delta(\delta > -1)$ of the sequences $\{s_n\}$ and $\{na_n\}$ respectively. The series Σa_n is said to be summable $|C, \delta|_k, k \ge 1$, if

$$\sum_{n=1}^{\infty} n^{k-1} \big| \sigma_n^{\delta} - \sigma_{n-1}^{\delta} \big|^k < \infty,$$

or equivalently

$$\sum_{n=1}^{\infty} n^{-1} \big| \eta_n^{\delta} \big|^k < \infty$$

Let $\{p_n\}$ be a sequence of positive numbers such that

$$P_n = \sum_{\nu=0}^n p_{\nu} \to \infty$$
 as $n \to \infty$ $(P_{-i} = p_{-i} = 0, i \ge 1).$

The series $\sum a_n$ is said to be summable $|\overline{N}, p_n|_k$, $k \ge 1$, if (Bor [1]),

$$\sum_{n=1}^{\infty} \left(P_n / p_n \right)^{k-1} |t_n - t_{n-1}|^k < \infty \,,$$

where

$$t_n = P_n^{-1} \sum_{v=0}^n p_v s_v.$$

The series $\sum a_n$ is said to be summable $|R, p_n|_k$, $k \ge 1$, if Bor [2],

$$\sum_{n=1}^{\infty} n^{k-1} |t_n - t_{n-1}|^k < \infty,$$

If we take $p_n = 1$, each of the two summabilities $|\overline{N}, p_n|_k$ and $|R, p_n|_k$ is the same as $|C, 1|_k$ summability Let $\{\phi_n\}$ be any sequence of positive numbers. The series Σa_n is said to be summable $|\overline{N}, p_n, \phi_n|_k, k \ge 1$, if (Sulaiman [3]),

$$\sum_{n=1}^{\infty} \phi_n^{k-1} |t_n - t_{n-1}|^k < \infty$$

It is clear that

$$\left|\overline{N}, p_n, n\right|_k = \left|R, p_n\right|_k, \left|\overline{N}, p_n, P_n/p_n\right|_k = \left|\overline{N}, p_n\right|_k, \left|\overline{N}, p_n, 1\right|_1 = \left|\overline{N}, p_n\right|, \text{ and } \left|\overline{N}, 1, n\right|_k = \left|C, 1\right|_k.$$

We assume $\{\alpha_n\}$, $\{\beta_n\}$ and $\{q_n\}$ be sequences of positive numbers such that

$$Q_n=\sum_{\nu=0}^n q_\nu\to\infty.$$

We prove the following.

THEOREM 1. Let t_n denote the (\overline{N}, p_n) -mean of the series $\sum a_n$ and write $T_n = \beta_n^{1-1/k} \Delta t_{n-1}$. If

$$\begin{split} &\sum_{n=\nu+1}^{\infty} \frac{\alpha_n^{k-1} q_n^k}{Q_n^k Q_{n-1}} = O\bigg\{ \frac{\alpha_v^{k-1} q_v^{k-1}}{Q_v^k} \bigg\}, \\ &\sum_{n=1}^{\infty} \bigg(\frac{\alpha_n}{\beta_n} \bigg)^{k-1} \bigg(\frac{P_n}{p_n} \bigg)^k \bigg(\frac{q_n}{Q_n} \bigg)^k |\epsilon_n|^k |T_n|^k < \infty, \end{split}$$

$$&\sum_{n=1}^{\infty} \bigg(\frac{\alpha_n}{\beta_n} \bigg)^{k-1} |\epsilon_n|^k |T_n|^k < \infty, \end{split}$$
(I)

and

$$\sum_{n=1}^{\infty} \left(\frac{\alpha_n}{\beta_n}\right)^{k-1} \left(\frac{P_{n-1}}{p_n}\right)^k |\Delta \epsilon_n|^k |T_n|^k < \infty,$$

then the series $\Sigma a_n \epsilon_n$ is summable $|\overline{N}, q_n, \alpha_n|_k, k \ge 1$.

2. PROOF OF THEOREM 1

Let τ_n be the (\overline{N}, q_n) -mean of the series $\sum a_n \epsilon_n$. Then

$$\begin{split} \Delta \tau_{n-1} &= -\frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^n Q_{v-1} a_v \epsilon_v \\ &= -\frac{q_n}{Q_n Q_{n-1}} \left\{ \sum_{v=1}^{n-1} \sum_{r=1}^n P_{r-1} a_r \Delta \left(P_{v-1}^{-1} Q_{v-1} \epsilon_v \right) + \left(\sum_{r=1}^n P_{r-1} a_r \right) P_{n-1}^{-1} Q_{n-1} \epsilon_n \right\} \\ &= -\frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_v P_{v-1}}{p_v} \beta_v^{1/k-1} T_v \right) \left(-q_v P_{v-1}^{-1} \epsilon_v + \frac{p_v}{P_v P_{v-1}} Q_v \epsilon_v + Q_v P_v^{-1} \Delta \epsilon_v \right) \\ &+ \left(\frac{P_n}{p_n} \right) \left(\frac{q_n}{Q_n} \right) \epsilon_n \beta_n^{1/k-1} T_n \\ &= -\frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^{n-1} \left(-\frac{P_v}{p_v} q_v \epsilon_v \beta_v^{1/k-1} T_v + Q_v \epsilon_v \beta_v^{1/k-1} T_v + \frac{P_{v-1}}{p_v} Q_v \Delta \epsilon_v \beta_v^{1/k-1} T_v \right) \\ &+ \left(\frac{P_n}{p_n} \right) \left(\frac{q_n}{Q_n} \right) \epsilon_n \beta_n^{1/k-1} T_n \\ &= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \quad \text{say.} \end{split}$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \alpha_n^{k-1} |T_{n,r}|^k < \infty, \quad r = 1, 2, 3, 4.$$

Applying Hölder's inequality, with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, we have

$$\begin{split} \sum_{n=2}^{m+1} \alpha_n^{k-1} |T_{n,1}|^k &= \sum_{n=2}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n Q_{n-1}} \right)^k \left| \sum_{\nu=1}^{n-1} - \frac{P_\nu}{p_\nu} q_\nu \epsilon_\nu \beta_\nu^{1/k-1} T_\nu \right|^k \\ &\leq \sum_{n=2}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k Q_{n-1}^{-1} \sum_{\nu=1}^{n-1} \left(\frac{P_\nu}{p_\nu} \right)^k q_\nu |\epsilon_\nu|^k \beta_\nu^{1-k} |T_\nu|^k \left\{ \frac{1}{Q_{n-1}} \sum_{\nu=1}^{n-1} q_\nu \right\}^{k-1} \\ &\leq 0(1) \sum_{\nu=1}^m \left(\frac{P_\nu}{p_\nu} \right)^k q_\nu |\epsilon_\nu|^k \beta_\nu^{1-k} |T_\nu|^k \sum_{n=\nu+1}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k Q_{n-1}^{-1} \\ &\leq 0(1) \sum_{\nu=1}^m \left(\frac{\alpha_\nu}{\beta_\nu} \right)^{k-1} \left(\frac{P_\nu}{p_\nu} \right)^k \left(\frac{q_\nu}{Q_\nu} \right)^k |\epsilon_\nu|^k |T_\nu|^k. \end{split}$$

$$\begin{split} \sum_{n=2}^{m+1} \alpha_n^{k-1} |T_{n,2}|^k &= \sum_{n=2}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n Q_{n-1}} \right)^k \left| \sum_{v=1}^{n-1} \frac{Q_v}{q_v} q_v \epsilon_v \beta_v^{1/k-1} T_v \right|^k \\ &\leq \sum_{n=2}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k Q_{n-1}^{-1} \sum_{v=1}^{n-1} \left(\frac{Q_v}{q_v} \right)^k q_v |\epsilon_v|^k \beta_v^{1-k} |T_v|^k \left\{ \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_v \right\}^{k-1} \\ &\leq 0(1) \sum_{v=1}^m \left(\frac{Q_v}{q_v} \right)^k q_v |\epsilon_v|^k \beta_v^{1-k} |T_v|^k \sum_{n=v+1}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k Q_{n-1}^{-1} \\ &\leq 0(1) \sum_{v=1}^m \left(\frac{\alpha_v}{\beta_v} \right)^{k-1} |\epsilon_v|^k |T_v|^k. \end{split}$$

.

$$\begin{split} \sum_{n=2}^{m+1} \alpha_n^{k-1} |T_{n,3}|^k &= \sum_{n=2}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n Q_{n-1}} \right)^k \left| \sum_{v=1}^{n-1} - \frac{P_{v-1}}{p_v} \frac{Q_v}{q_v} q_v \Delta \epsilon_v \beta_v^{1/k-1} T_v \right|^k \\ &\leq \sum_{n=2}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k Q_{n-1}^{-1} \sum_{v=1}^{n-1} \left(\frac{P_{v-1}}{p_v} \right)^k \left(\frac{Q_v}{q_v} \right)^k q_v |\Delta \epsilon_v|^k \beta_v^{1-k} |T_v|^k \left\{ \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_v \right\}^{k-1} \\ &\leq 0(1) \sum_{v=1}^m \left(\frac{P_{v-1}}{p_v} \right)^k \left(\frac{Q_v}{q_v} \right)^k q_v |\Delta \epsilon_v|^k \beta_v^{1-k} |T_v|^k \sum_{n=v+1}^{m+1} \alpha_n^{k-1} \left(\frac{q_n}{Q_n} \right)^k Q_{n-1}^{-1} \\ &\leq 0(1) \sum_{v=1}^m \left(\frac{\alpha_v}{\beta_v} \right)^{k-1} \left(\frac{P_{v-1}}{p_v} \right)^k |\Delta \epsilon_v|^k |T_v|^k. \end{split}$$

$$\begin{split} \sum_{n=1}^{m} \alpha_n^{k-1} |T_{n,4}|^k &= \sum_{n=1}^{m} \alpha_n^{k-1} \left| \left(\frac{P_n}{p_n} \right) \left(\frac{q_n}{Q_n} \right) \epsilon_n \beta_n^{1/k-1} T_n \right|^k \\ &\leq 0(1) \sum_{n=1}^{m} \left(\frac{\alpha_n}{\beta_n} \right)^{k-1} \left(\frac{P_n}{p_n} \right)^k \left(\frac{q_n}{Q_n} \right)^k |\epsilon_n|^k |T_n|^k. \end{split}$$

3. APPLICATIONS THEOREM 2. If

$$\alpha_n = 0(\beta_n), \quad P_n q_n = 0(p_n Q_n),$$

and (I) is satisfied, then the series Σa_n is summable $|\overline{N}, q_n, \alpha_n|_k$, whenever it is summable $|\overline{N}, p_n, \beta_n|_k$, $k \ge 1$, (that is $|\overline{N}, p_n, \beta_n|_k \Rightarrow |\overline{N}, q_n, \alpha_n|_k$).

PROOF. Follows from Theorem 1 by putting $\epsilon_n = 1$. COROLLARY 1 (Bor [1] and [4]). If W. T. SULAIMAN

$$nq_n = 0(Q_n), \quad Q_n = 0(nq_n),$$

then the series $\sum a_n$ is summable $|\overline{N}, q_n|_k$ iff it is summable $|C, 1|_k, k \ge 1$

PROOF. Applying Theorem 2 with $\alpha_n = Q_n/q_n$, $\beta_n = n$, and $p_n = 1$. We have $\alpha_n = 0(\beta_n)$, $P_nq_n = 0(p_nQ_n)$, and (I) is satisfied. Therefore $|C, 1|_k \Rightarrow |\overline{N}, q_n|_k$. Now the same application of Theorem 2 with $\alpha_n = n$, $\beta_n = P_n/p_n$, we obtain the other way round.

COROLLARY 2 (Bor and Thorpe [5]). If

$$P_n q_n = 0(p_n Q_n), \quad p_n Q_n = 0(P_n q_n) \tag{II}$$

then the series $\sum a_n$ is summable $|\overline{N}, q_n|_k$ iff it is summable $|\overline{N}, p_n|_k$, $k \ge 1$.

PROOF. Applying Theorem 2 with $\alpha_n = Q_n/q_n$, $\beta_n = P_n/p_n$. Clearly $\alpha_n = 0(\beta_n)$ and (I) is satisfied. Therefore $|\overline{N}, p_n|_k \Rightarrow |\overline{N}, q_n|_k$. The result is still valid if we interchange $\{p_n\}$ and $\{q_n\}$

COROLLARY 3. Suppose that (I) is satisfied for p and q, (II) is also satisfied and that $\{q_n/p_n\}$ is nonincreasing, then the series $\sum a_n$ is summable $|R, q_n|_k$ iff it is summable $|R, p_n|_k$, $k \ge 1$.

PROOF. Applying Theorem 2 with $\alpha_n = \beta_n = n$. It is clear that $|R, p_n|_n \Rightarrow |R, q_n|_k$. For the other direction, it needs to be shown that (I) is satisfied if we are replacing q_n by p_n Since $\{q_n/p_n\}$ is nonincreasing, we have, using (II),

$$\begin{split} \sum_{n=v+1}^{\infty} \frac{n^{k-1} p_n^k}{P_n^k P_{n-1}} &= 0(1) \sum_{n=v+1}^{\infty} n^{k-1} \left(\frac{q_n}{Q_n}\right)^k Q_{n-1}^{-1} \left(\frac{q_{n-1}}{p_{n-1}}\right) \\ &= 0(1) \left(\frac{q_v}{p_v}\right) \sum_{n=v+1}^{\infty} \frac{n^{k-1} q_n^k}{Q_n^k Q_{n-1}} \\ &= 0(1) \left(\frac{q_v}{p_v}\right) \frac{v^{k-1} q_v^{k-1}}{Q_v^k} = 0 \left\{\frac{v^{k-1} p_v^{k-1}}{P_v^k}\right\} \end{split}$$

It may be mentioned that Corollary 3 gives an alternative proof to the sufficiency part of the theorem in [2].

REFERENCES

- [1] BOR, H., On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), 147-149
- [2] BOR, H., On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), 1009-1012.
- [3] SULAIMAN, W T., On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992), 313-317.
- [4] BOR, H., A note on two summability methods, Proc. Amer. Math. Soc. 98 (1986), 81-84.
- [5] BOR, H. and THORPE, B., On some absolute summability methods, Analysis 7 (1987), 145-152