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Abstract

Conditions are investigated for systems of the form Mz’ N+Az + y(z), where y is quadratic,

which lield a point dissipative system. Application of the conditions are made to the problem of
ezistence of linear feedback controls u Kz for systems of the form

Mz’= N + A= + y(=) + Bu

which force the system to be point dissipative. The basic results have eztensions to more general

classes of systems.

1 Introduction
We are concerned with a class of nonlinear n-dimensional systems of the form

Mz’= N + Az + f(z),

where M is a positive definite matrix and the nonlinear term J(z) is quadratic of the form

f()
zTc,z

The n x n matrices {Ci} are symmetric with the orthogonality property zTf(z) 0 for all z.

Functions J with the orthogonality property are said to be conservative. We start with an inves-

tigation of relations between the n x n matrix A and the function J that are sufficient to insure

that the system is point dissipative, i.e., which guarantee the existence of a bounded region in R
which every trajectory of the system eventually enters and remains within. Such conditions would

imply the system has a bounded attrnctor. As an example of a point dissipative system of the

form given above, we cite the well known Lorenz system in Lorenz [15] and Sparrow [17], see also

Guckenheimer [10] and Wiggins [181, z’= az + J’(), where

A= 7 -1 0 a>0, "r>0, b>0
0 0 -b

TlX2 Z3
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Note that f has the orthogonality property. Furthermore, if tt is a nontrivial member of the zero

set of f, i.e., u (ul, 0, 0)T or u (0, u2, u3)r then uTAu < 0. Rotations preserve both of these

properties.

When n 2 or 3, a sufficient condition for the system to be point dissipative, see Bose [6, 1] is

that urAu < 0 for nontrivial u in the zero set of f. The conjecture that this condition is sufficient

for n-dimensional systems is unresolved except for special cases, i.e., systems where the zero set of

f satisfies additional conditions. Theorem extends the n-dimensional result in Bose [1].
Since linear feedback does not disturb the zero set of f, our feeling is that linear control minimally

modifies the structure of the uncontrolled system. Our goal is to produce a linear feedback so the

controlled system either has the origin as an asymptotic stable point or is point dissipative. No use

is made of nonlinear feedback.

The extensions in Section 4 relax the conditions on f(z), i.e., f(z) need not be conservative or

quadratic. Some of the results in this paper were announced in Bose [3] without proof.

2 Basic Results
It can be shown, see Bose [1] that for quadratic f(z) with the orthogonality property the set

Zf {z f(z) 0 } contains at least a 1-dimensional subspace of R". For each vector aT

(a’,a2,... ,a,), we define the n n matrix C(c) as follows:

A +A____r
i=, 2

Our first result is the following lemma.

Lemma 1 If there exists an a so that the matrix C(a) is positive definite then the system ’Az 4" f z is point dissipative.

This lemma is proven by a standard argument using the Lyapunov function

1
V(z) -(z a)TM(z ).

For large z the time derivative of Y(z(t))is dominated by --zT(t)C(vt)x(t), see Bose [1]. Vectors
ct for which C(a) is positive definite are said to be admissible for the system z’ Az + f(z). A
condition on the matrix A and y(z) which guarantees the existence of admi.ssible ct’s is the topic of

our next result. The condition uTAu < 0. for all nontrivial u in Zf is necessary for the existence

of an admissible a. We have shown in Bose [1] the condition is sufficient when n is 2 or 3. We

have also shown in Bose [2, 4] that this condition is sufficient when Zf is an (n 1)-dimensional
subspace of R". The next result weakens this equality to inclusion. The method of proof presented
here contains some new ideas not found in Bose [4].

Theorem 1 Consider the system Mz’ Az + f(z), where f is conservative. If Zf contains an

(n 1)-dimensional subspace of R then urAu < 0 for all nontrivial tt in Zf if and only if there
is an admissible ot for the system.

zrCz ]We start by considering the conservative quadratic function f(z) If we define

TC.

z then is a bilinear function and f() . The vector space generated or

spanned by Ul, u,..., u is denoted by S(u, u2,..., u).
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Lemma 2 lf S(ul,u2,...,u) C Zf, u1,2,..., are linearly independent, and urAu < 0 for
all nontrivial u in Zf then the matriz B [--zrAy]kx, is positive definite.

Proof. Let a: be an element of S(ux,u2,...,u).. Then a: ,=0c,u, and, by hypothesis,

urAu < 0 for all nontrivial u in Zf. Therefore

0 < -rA- (,(ciui)rA(ciui))= (c,,...,c)B
i=1

Ck

implies B is positive definite.

Lemma 3 The subspace S(u,u2,..., u), is contained in Zf, if and only if uiQuj 0 for all

i,j 1,2,...,k.

Proof. Suppose that S(u,u:,...,u) C_ Zf. Then S(u,,u.i C_ Zf and ui, ui, and ul + u: E
S(u,, uj ). Therefore

Conversely suppose that uiQuj 0 for all i,j 1,2,...,k. Let z E S(u,u,...,uk) so that
:v ,= c,u, Now

k

s() s( ,,,) Z:
i=1 i=1 j=l

which implies that S(1, ,...,) C_ Zf.
Lemma 4 When Zf contains an (n- 1)-dimensional subspace then there is a basis u, u2,...,

of R" such that Zf S(u uz, u,_ or Zf S(u, u2 u,_ t3 S(U+l, u+,..., u,).

Proof. When ZI contains an (n- 1)-dimensional subspace then Zf is either an (n- 1)-dimensional
subspace or Zf is the union of an (n- 1)-dimensional subspace H and another subspace K Bose [5].
When K is nontrivial, let u, u+,..., u,_ be a basis of the intersection of H and K. Then there
is a basis ul, u,..., u,, of/i7’ such that u, u,..., u,,_ is a basis of H and u+, uk+,..., u, is

a basis of K.
Proof of Theorem 1. Suppose that S(u, u2,..., u,,_) C_ Zf. Let u, u,..., u,, be any basis for

R. Then for any z in R we have :v = PiUi and

PT

where pT (Pl, P2,-.-, P,). This last quadratic function of p can be written as

pT
br TuQu,--uTAu, P
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where

bT (oTtlQta uT Aun, Tztn-lQtn zTa-1 Au,)
and B is the (n 1) x (n 1) matrix of Lemma 2 and is therefore positive definite. Hence
is positive definite for some c if and only if ’(c) is positive definite for some c. In order to show

that (a) is positive definite we need only show further that det((a)) > 0.

Case 1. Suppose that S(ul, u2,..., /,n-1) ZI. A different proof appears in [4]. In this

case uQu # 0 and unQu can not belong to S(uIQu, u2Qua,... ,u,_lQu). For u,Qu,
.,= d,u,Qu implies that

f(u_d, ’-
,) , ,i 0

=1 =1

pothesis.
Let dimS(uQua,...,u_Qu) k,k _< n- 1. Without loss of generality, suppose that

ulQu,. ukQu are linearly independent. Then S(uiQu,,. ua_ Qua)
S(UlQU,..., ukQun) and

uk+jQu, djiu,Qu,, j l,...,n k -1

Hence s(uIQu,...,ukQu,,uQun) has dimension k + and so, for each r > 0, there exists

a vector c such that cTuiQua uT, Au O, 1,... ,k, and cTu,Qu, uT, Au ’.

For such an a, the last row of (a) becomes (O,...,O,b+,...,b,_l,r), where bk+, for j

1,... ,n k 1, does not depend on c but rather on uTAu,, U,_TAu, and d,, 1, k.

Let bT (O,...,O, bk+,...,ba_,). Now det((a)) (’-bTB-b)detB see Horn [11]. We can

choose r large enough to make " > bTB-b and, for such an r, (a) is positive definite. Hence

C(a) is positive definite, i.e., a, is admissible.

Case 2. Suppose Zj is the union of an (n 1)-dimensional subspace H and another subspace
K neither of which is trivial. Let ut,u,...,u,, be the basis given in Lemma 4, in particular

H S(ut,..., u,) and K S(uk+,..., u). As in Case 1, the matrix (ex) in this case is of the

form

where

B bpT
bT --uT,Au

bT (cxTulQu, uTIAun,... cTukQu uTkAun, --uT+I Aua,..., --u_T 1Aun
and B is the same in Ce 1. Also the (n k) x (n k) matrix

-u+]Au+ -U+lAU+2 -uT+Au
D -u+Au+ -u+2Au+2 -u+Au,

is positive definite by hypothesis and Lemma 2. We can write

D
ar -uAu

where ar (-u[+,Au.,...,-uL,Au.) and the (n k 1) x (n k 1) matrix Ba is positive
definite. Also det(D) det(-uAu, aTBa)det(Ba) > 0. Since det(Ba) > 0, this implies that

(--uT, Au, aTBT a)det(B3) > 0
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The vectors uQun,...,ukQUn are linearly independent. Otherwise, = piu,Qttn 0 with

pT (Pl,...,Pk) 0 implies that

k

(,,. + Z;v,,,,) E:,",- 0.
t=l

This in turn implies that u,, + 1/2 :,1 pitt, E Zf and so u,, E H, a contradiction. Hence for each k-

vector (w,,..., wk) wT, there exists an ct(w) so that a(w)Tu,Qu, uAtt, w,, i= 1,... ,k.
Let yT (w,,..., wk, _uT+Au,,..., _U,_IT Aun)= (wT, aT). Then det(’(ct(w))= (--uT, Au,-

B B2 andB- E E2 whereBandEarekkyTB-’y)det(B). In block form B BT Bz Er E3

positive definite matrices and B3 and E3 are positive definite (n k) x (n k) matrices.

Note that B3 was defined as a submatrix of D.
In order to show that w0 -EllEna is a choice of w so that det(’(a(w)) > 0 we would like

to show that Ez EThEl E2 Bf. In block form

[I 0] B,E,+BET B1E+B,Ea
0 I BE,+BaET B[E+BaEa

This gives us two equations in which we are interested, BTE2 + BaEa I and SteEl + BaEf O.

The first implies that Ea B*BT2E and the second implies ErE -B*BT. Hence

Ea ETE,E B (B BT + ETS[)E B- (B-1BT + B;1BT)S B;1.

Moreover, for Y0 (w0, aT),

yToB-’yo wToE,wo + 2wToE=a + arEaa aT(E3- ET2 E E2)a aTB’a.
Since by (2.1) --uTAu,- aTBa > O,

det(’(ct(Wo)) (--uTAun yo Bfyo) det(B) (-uAttn arB;aa) det B > O.

Therefore C(et(wo)) is positive definite, i.e., ct(wo) is admissible, and Theorem follows from

Lemma 1.

3 Control Results
For our next result we consider nonlinear control systems of the form

Mz’= N + Az +

where B is an n x m matrix and tt is an m-vector. Two types of general behavior are investigated:

1. Existence of a linear feedback control u Ka: so that the system Ma:’ N +
(A + BK)z + f(z)+Bu has the origin as a global asymptotic stable point.

2. Existence of a linear feedback control u Ka: so that the system Mz’ N +
(A + BK)z + f(z)+Bu is point dissipative.

Let S(B) be the column space of B and B" be the orthogonal complement of S(B).

Lemma 5 /f.hd is a nonempty closed subset of { Ix e B" and and zTA < 0} and
A/" is a nonempty closed subset of {zl, s(B) and z I1= 1} then there is a negative number

such that vr(A + rBBr)v < 0 for v S(.) S(N’).
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Proof. A4 A/" is compact in R" Rn. Since the function

(rA)(,rA,,,) ()
(’) (TA) BTo

is continuous on x , there exists (o, Vo) x if, such that (,v) 5 (Bo, Vo) for

all (,v) x . Choose a negative number r such that (o, Vo) + r < O. For such an

r, d(, v) + r (o, Vo) + r < O, for all (, v) x . That is

(TA)(vTAv) (Tv)
(, v)= (DTAD) BTv + r < 0

for all (, v) 6 x . Since TA < 0, by hypothesis, we have (TA)(vTAv) r(TA).
Br I" _(rA). > 0 fo 1 (, ) e x .
If z a + by, where (, v) 6 x and a and b are scalars, then

zT(m + rBBT)z (a + bv)T(A + rBBT)(a + by)

aTA + 2abTAv + b(vTAv + r BTv

TA BTAv a a
[a,b] TAv vTAv+r][BTvI] bJ =[a’b]L b

Now consider the matrix -L. Since --TA > 0 and the det(-L) (TA)(vTAr’)+ r BT
TA--(TAt,)2 > 0 for all (, t,) E A4 A/’,-L is positive definite. Hence a:T(A+rBBT)T: < O.

Theorem 2 There ezists a matriz K such that the system M:’ (A+BK): + y(:) has the origin

as a global asymptotic stable point if uTAu < 0 for each nontrivial vector u which is orthogonal to

the column space of B.

Proof. Note that R" B+/-@S(B). Let dimS(B) k, _< k _< n, then dims+/- n-k.

Ifk n then the result is immediate. Assume k < n. Let .M {a: E B+/-, z 1}
and A/" {z z S(B), z 1}. By Lemma5 there is a negative number r such that

:T(A + rBBT) < 0 for all nontrival z /i. Let K rBT.
Consider the Lyapunov function V() 1rM:, then

(/(,) ,TM[M-I {(A + rBBT)z + f()}] :T(A + rBBT) < 0

where M’= (A + BK): + I() and x(t) # O. Hence by Lyapunov’s Theorem in LaSalle [141 or

Brauer [7] the system M:’ (A + BK), + 1() has the origin as a global asymptotic stable point.

Compare with standard results for linear feedback control of linear systems in Cruz [9] or Russell [16].

Example for Theorem 2. Consider the control system ’ Az -4- f(z) + Bu, where

Here

3 -4 ]A= 2 -1 0
-4 0

f(.) -zz
xy

B+/- S 0 and Zf S 0 U S 0
0 0 0
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Note that u E B"t and u # 0 implies uTAu < 0. Take K rBT. Then

3+r -4-r
A + BK A + rBBT 2 -1 0

-4-r 0 l+r

The Hermitian part of A + rBBT is given by

3+r - -4-r 1-I 0
-4-r 0 l+r

which is negative definite when r -7. Hence the system z’ (A- 7BBT)z + f(z) is globally
asymptotically stable. When r -4 the system is point dissipative since T(A 4BBT)z < 0 for

all nontrival zeros of .f.
Five trajectories of the controlled system

"’= )4 0
[1 0 1]) z + 0]

are shown in Figure 1. The initial point of all of the trajectories is (-10,10,10). One trajectory is

when there is no control, that is, r 0. This is the long trajectory that is at (-329,-4, 7) when

1.2. This trajectory seems to be moving right along at that time. The other trajectories are when

the control parameter r -4,-5, -6, and 7. These trajectories seem to reach a limit point of

the controlled system, namely, (-1.7,-1.7, 1.0), (-0.5,-1.0, 0.0), (0.0, 0.0, 0.0) and (0.0, 0.0, 0.0),
respectively. These trajectories have slowed down and have been terminated when 600. The

first trajectory uses 74723 calculations while the last four trajectories only use about 7500 each.

The adaptive numerical method used to calculate the the trajctories takes larger time steps as the

trajectory slows down.

{- 10, 10, 10}

d-y= .. / [ 0-] x / -=
-4 0

xy

Figure 1:

Theorem 3 Consider the system Mz’ N + (A + BK)z 4- Y(=) with M, N, A, B and I’ fixed. If
Z.f contains an (n- 1)-dimensional subspace of R" and either
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I. ZIoB={0}or
2. Z. B+/- 0 and u+/-Au < 0 for all nontrivial u E Z, f B+/-

then there exists a matrix K such that the system is point dissipative.

Proof. Under the hypothesis, we would like to show that there exists a negative number r such that

,T(A + rBBT) < 0 for all E Z.f. The result follows from Theorem with K rBr.
Case 1. Suppose that Z.fOB+/- {0}. Let A/" { Zf, }. A/" is a compact set in R.

Since the function (:) crA
iiBrll2, A/" is continuous on A/" there exists o q A/" such that () <

(Zo) IIBTZ011,, for all z A/’. Let r be a negative number such that (Zo) + r IIBTZoll + 7" < 0.

xTA;IFor such an r, (z) + r IIBTzlI + 7" < (z0) + 7" < 0 for all z E R". Now z e Zjr and z # 0

implies that z -II , where W. Then zr(A + rBBr)z =11 [ur(A + rBBT)u] < 0 for

allzZf, z#0.
Case 2. Suppose that Zff3B+/- # {0} and uTAu < 0 for all nontrival u ZffB+/-. Let

M ( Zy B, 1} nd ( Z S(B), 1}. By Lemma 5 there
is X negative number r such that zT(A + rBBT)z < 0 for nontrival Zf.

Example for Theorem 3. Consider the control system z’ A + f(z) + Bu, where

A= 4 f(,) -zz and B=
2 -1 xy

Note that A is not positive a definite matrix, [1 0 0]A 0
0

Here
]--1 < 0 and [0 1]A =5>0.

Figure 2:
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If u E B+/- then u u_ Zy S 0 U S 0 If u E Zf then either

-us 0

u= 0 oru= us Thus
0 u3

Zf f3 B+/- 0 -u
0 u2

Now [u, 0 0]A 0 -u < 0 and [0 -u2 u2lA -u: u]-3u+u < 0 i.e.,
0 u:

[:2 -1 1]A =l>0, Theorem :2 does not apply. Again Zfand[0 1].4

5 > 0 and so Theorem does not apply.
If we choose k 2BT then

04]-I 2
-3 -I

The Hermitian part of A- 2BBT is not negative definite, but

and

[u, 0 0](A+BB’) 0 -u < O
0

[[0 -us u_I(A + BBT) -tt= -u] < O

Therefore if u q Zy then uT(A + BBW)tt < O. Hence Mz’ (A- 2BBT) + f(x) is point

dissipative. In Figure 2 two trajectories are given. One when the system is uncontrolled, r 0, and

one when the system is controlled, r -2. For both trajectories (-2,-2, 2) is the initial point.

4 Extension of previous results
The sufficient condition for a quadratic dynamical system to be point dissipative discussed above

uses a relation between the quadratic and linear parts of the system when f is conservative. The

following lemma allows us to extend the condition to the case where there exists a positive definite

matrix S such that SM MS and Sf is conservative. See Bose [5].

Lemma 6 Let
Mx’ g + Az + f(a:) (1)
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be a quadratic dynamical slstem for which there exists a positive definite matrix S such that SM

MS and Sf is conservative. Then there exists matrix H for which the change of variables St H

transforms the dlnamical slstem (1) into (HMH-1)St HN+BSt + 9(St) which has a conservative

quadratic term. Furthermore, zrSAz StrBSt.
When Sf is conservative then we say that a vector a is admissible for the dynamical system

Mz’ N + Az + y(a:) if-zTSAx + arHy(z) is a positive definite function where S HTH.

When y is conservative then the condition for an admissible a reduces to --TA + otTy() is

positive definite. The proofs of the gs when the quadratic part of the system is conservative entail

demonstrating the existence of an admissible c for the system. These results can be restated as

follows:

Theorem 4 A quadratic dynamical system

Mz’= N + Az + f(z)

is point dissipative when there exists a positive definite matrix S such that SM MS and S.f is

co’nservative and there exists an admissible o.

Another direction of generalizing the past results is to consider nonlinear dynamical systems which

have nonquadratic nonlinear terms as well as quadratic terms. Relative to the nonlinear terms there

again must exist a positive definite matrix S such that the nonlinear terms premultiplied by S are

conservative. See Bose [5].

Theorem 5 When there exists a positive definite matrix S such that SM MS, St and the

quadratic function Sf are conservative, and for S HTH

Condition (A) For some admissible ot for M’ N + Ar + f(r) there exists an ordered triple

of numbers (e, C,m) such that -arnv(z) _< C -’ fo all z with II-> m.

then M,’= N + Az + f(z) + g(e) is point dissipative.

Note that condition (A) can be replaced by either of the stronger conditions (B) or (C).

Condition (B) There is an admissible c, for Mz’= N + Az + f(a:) and o z =.

Condition (C) There is an admissible c, for Mz’ N + Az + f(z) and O is bounded.

Theorem 6 A quadratic dynamical slstem Mz’ N+ Az + f(z) A a matrix and f a quadratic

function, is point dissipative when

1. there exists a positive definite matrix S such that SM MS and Sf is conservative,. the zeros of y contains an (n- 1)-dimensional subspace, and

3. zrSAz < 0 for any z which is a nontrivial zero of .
This result can be generalized by adding to the differential equation any conservative function

9() whose growth is restricted. The corollary states this condition.
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Corollary 1 Let g and the quadratic function y be conservative. If Zy contains an (n 1)-
dimensional subspace and . 0 in Z.f implies zrAz < 0 and

Condition (A} For some admissible there exists an ordered triple of numbers (,C, rn) such

that -rg(z <11 =-’ fo all with m. then Mx’ N + a. + ,f(.) + 9(.) is point

dissipative.

Note that condition (A) can be replaced by either of the stronger conditions (B) or (C).

Condition (B) There is an admissible ct for Mz’= N + Az + .f(:) and a o =-
Condition (C) There is an admissible ct for M;e’= N + A -!- 2t() and 9 is bounded.

5 Conclusions
Quadratic and "almost" quadratic nonlinear systems can exhibit a wide r,ange of qualitative

behavior. Even the subclass of such systems with compact attractors contains systems with point

attractors, limit cycles and strange attractors, see Sparrow [17]. Linear feedback control problems
with system objectives of steering to desired limit points or of minimizing the diameter of a compact
attractor have yet to be formulated and solved. This paper represents only a first step, i.e., using
linear feedback to produce a controlled system with a compact attractor. An alternate approach
might be constructed along the lines of Chow [8] and Kokotovic [13, 12]. Such an approach does
not seem to be as closely related to the linear theory as the approach outlined here.
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