ON DIRICHLET CONVOLUTION METHOD

INDULATA SUKLA

Department of Mathematics Sambalpur University Jyoti Vihar, Sambalpur Orissa, INDIA

(Received February 8, 1991 and in revised form April 20, 1995)

ABSTRACT. In this paper we have proved limitation theorem for (D, h(n)) summability methods and have shown that it is best possible.

KEY WORDS AND PHRASES: Summability, Dirichlet convolution methods 1991 AMS SUBJECT CLASSIFICATION CODES: 11, 11N

1. INTRODUCTION

In his studies on the prime number theorem, Ingham [1] defined a novel summability method called (I) This was generalized by Segal [2] and he defined the notion of (D, h(n)) summability, where $h: N \to R$ denotes a function with h(1) = 1 We define the "Dirichlet inverse" $h^{\bullet}(n)$ of h(n) by $\sum_{d|n} d|n$

$$h(d)h^{-}(n/d) = \begin{cases} 1, n = 1\\ 0, n > 2 \end{cases} \quad \text{A series } \sum a_n \text{ is said to be } (D, h(n)) \text{ summable to } L \text{ if and only if} \\ n \xrightarrow{\lim} \infty \frac{1}{n} \sum^n v \sum a_d h(v/d) = L. \end{cases}$$
(11)

$$\stackrel{\lim}{\to} \infty \frac{1}{n} \sum_{v=1}^{n} v \sum_{d|v} a_d h(v/d) = L.$$
(11)

Given a series $\sum a_n$ and a specific h(n), define the function

$$D(t) = \frac{1}{t} \sum_{n < t} n \sum_{d \mid n} a_d h(n/d).$$
(1.2)

Since $D([t]) = \frac{t}{[t]}D(t)$, it clearly makes no difference to the existence or value of the limit (1 2) whether $t \to \infty$ is through real values or integers. Ingham's method corresponds to the case $h(n) = \frac{1}{n}$

Segal [3] proved the limitation theorem for (I) summability. If $\sum a_n$ is (I) summable, then $\sum_{n \le x} a_n = o(\log x)$ and has shown in the following theorem that his result is best possible

THEOREM A [4] Let $\in (x)$ be any positive function decreasing to 0 monotonically but arbitrarily slowly as $x \to \infty$. Then there exists a series $\sum a_n$ which is (I) summable and such that

$$\sum_{n < x} a_n \neq 0 (\, \in (x) {\rm log}\, x) \quad {\rm as} \quad x \to \infty.$$

Sukla [5] has shown an analogous limitation theorem for (D, h(n)) summability.

THEOREM B. If $\sum a_n$ is (D, h(n)) summable then $\sum_{n \leq x} a_n = O(\log x)$ if

(i)
$$H^*(r) = \sum_{n \le r} h^*(n) = O(1)$$

and

(ii)
$$\sum_{v=1}^{n} |h^{*}(v)| = O(\log n).$$

i sukla

It is remarked in that paper that the condition (ii) cannot be dropped However if we replace (i) by a slightly stronger condition then we get the result to be true without assuming (ii) In section 4 we show that our revised version of Theorem A is best possible.

2. MAIN RESULTS

THEOREM 1. If $\sum a_n$ is (D, h(n)) summable then

$$\sum_{n \le x} a_n = O\left(\sum_{n < x} |h^*(n)|\right)$$
(2.1)

if

$$\sum_{n \le r} h^*(n) = O\left((\log r)^{-1-\epsilon} \right) \quad \text{as} \quad r \to \infty.$$
(2.2)

We will show that (3 1) is a best possible result

THEOREM 2. Let $\in (x)$ be any positive function decreasing to 0 monotonically but arbitrarily slowly as $x \to \infty$. Then there exists a series $\sum a_n$ which is (D, h(n)) summable and (3 2) holds and

$$\sum_{1 \le d \le \frac{r}{[r^{1/2}]+1}} |h^*(d)| / \sum_{n \le r} |h^*(n)|$$
(2.3)

does not tend to zero as $r \to \infty$ holds and such that

$$\sum_{n\leq x} a_n \neq o\left(\in (x) \sum_{n\leq x} |h^*(n)| \right) \quad \text{as} \quad x \to \infty.$$

PROOF OF THEOREM 1. For $m \ge 0$, let

$$K(m) = \begin{cases} mD(m) & \text{if } m \ge 1 \\ 0 & \text{if } m = 0 \end{cases}$$

then by (1 1) and (1.2) it follows that

$$K(m) = O(m)$$
, as $n \to \infty$, and (2.4)

$$\sum_{n \le r} a_n = \sum_{d \le r} \frac{K(d)}{d} d\left(\frac{H^*\left(\frac{r}{d}\right)}{d} - \frac{H^*\left(\frac{r}{d+1}\right)}{d+1}\right)$$

By (2 4) it is enough to show that

$$\sum_{d \le r} d \left| \frac{H^*\left(\frac{r}{d}\right)}{d} - \frac{H^*\left(\frac{r}{d+1}\right)}{d+1} \right| = O\left(\sum_{n \le r} |h^*(n)|\right).$$
(2.5)

The left hand side of (2.5) is maximized by

$$\sum_{d \le r} \left| H^*\left(\frac{r}{d}\right) - H^*\left(\frac{r}{d+1}\right) \right| + \sum_{d \le r} \frac{\left| H^*\left(\frac{r}{d+1}\right) \right|}{d+1},\tag{2.6}$$

Now

$$\sum_{d \le r} \left| H^*\left(\frac{r}{d}\right) \right| - H^*\left(\frac{r}{d+1}\right) = \sum_{d \le r} \left| \sum_{\frac{r}{d+1} \le v \le \frac{r}{d}} h^*(v) \right| \le \sum_{1 \le v \le r} |h^*(v)|$$

and

$$\sum_{d \le r} \left| \frac{H^*\left(\frac{r}{d+1}\right)}{d+1} \right| = O\left(\sum_{d \le r-2} \left(\log \frac{r}{d+1}\right)^{-1-\epsilon} \frac{1}{d+1}\right) = O(1)$$

since $H^*(x) = O$ for x < 1

PROOF OF THEOREM 2. Define b_n by

$$b_n = \sum_{d|n} h^*\left(\frac{n}{d}\right) \left(\frac{dD(d) - (d-1)D(d-1)}{d}\right), \quad \text{where} \quad D(t) \to 0 \quad \text{as} \quad t \to \infty$$
(2.7)

then

$$\frac{1}{t}\sum_{n(2.8)$$

Since $D(t) \rightarrow 0$, $\sum b_n$ is (D, h(n))summable to 0.

$$\begin{split} \sum_{n \le r} b_n &= \sum_{n \le r} \sum_{d \mid n} h^* \left(\frac{n}{d} \right) \left(\frac{dD(d) - (d-1)D(d-1)}{d} \right) \\ &= \sum_{d \le r} \left(\frac{dD(d) - (d-1)D(d-1)}{d} \right) \sum_{m \le \frac{r}{d}} h^*(m) \\ &= \sum_{d \le r} D(d) - D(d-1)H^* \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} H^* \left(\frac{r}{d} \right) = \sum_1 + \sum_2 \left(\frac{r}{d} \right) \\ &= \sum_{d \le r} \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_1 \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_1 \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_1 \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_1 \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_{d \le r} \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_{d \le r} \left(\frac{r}{d} \right) = \sum_{d \le r} \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_{d \le r} \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_{d \le r} \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_{d \le r} \frac{T}{d} \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{D(d-1)}{d} \left(\frac{r}{d} \right) = \sum_{d \le r} \frac{T}{d} \left(\frac{r}{d} \right) + \sum_{d \ge r} \frac{T}{d} \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{T}{d} \left(\frac{r}{d} \right) + \sum_{d \ge r} \frac{T}{d} \left(\frac{r}{d} \right) + \sum_{d \le r} \frac{T}{d} \left(\frac{r}{d} \right) + \sum_{d \ge r} \frac{T}{d}$$

Now

$$\sum_{1} = \sum_{d \leq r} D(d) \left[H^*\left(\frac{r}{d}\right) - H^*\left(\frac{r}{d+1}\right) \right].$$

Since $H^*(x) = 0$ for x < 1

$$\sum_{2} = O\left(\sum_{d \leq r} \frac{1}{d} \left| H^{*}\left(\frac{r}{d}\right) \right| \right) = O(1) \quad \text{as} \quad r \to \infty \quad by \ (2.2).$$

We have now

$$\sum_{1} = \sum_{n \le r} b_n + O(1).$$
 (2.9)

Suppose the theorem does not hold then

$$\sum_{n \le r} b_n = o\left(\epsilon(r) \sum_{n \le r} |h^*(n)|\right)$$

So (2 9) becomes

$$\sum_{1} = o\left(\epsilon(r)\sum_{n \le r} |h^{*}(n)|\right).$$
(2.10)

Since $D(d) \rightarrow 0$ as $n \rightarrow \infty$, let

$$\alpha_{r,d} = \frac{1}{\epsilon(r)\sum_{n \leq r} |h^*(n)|} \left[H^*\left(\frac{r}{d}\right) - H^*\left(\frac{r}{d+1}\right) \right].$$

It is well known that in order for $\alpha_{r,d}$ to transform all sequences tending to 0 into sequences tending to 0,

$$\frac{1}{\epsilon(r)\sum_{n \leq r} |h^*(n)|} \sum_{d \leq r} \left| H^*\left(\frac{r}{d}\right) - H^*\left(\frac{r}{d+1}\right) \right| < c$$

must hold for all r where c is independent of r

$$\sum_{d \le r} \left| H^*\left(\frac{r}{d}\right) - H^*\left(\frac{r}{d+1}\right) \right| = \sum_{d \le r} \left| \sum_{\frac{r}{d+1} < m \le \frac{r}{d}} h^*(m) \right| \ge \sum_{r^{1/2} < d \le r} \left| \sum_{\frac{r}{d+1} < m \le \frac{r}{d}} h^*(m) \right|$$

609

I SUKLA

Since in this last sum $\frac{r}{d} - \frac{r}{d+1} < 1$ the inner sum contains at most one term, and so

$$\left|\frac{1}{\epsilon(r)\sum\limits_{n\leq r}|h^{*}(n)|}\sum\limits_{d\leq r}\left|H^{*}\left(\frac{r}{d}\right)-H^{*}\left(\frac{r}{d+1}\right)\right|\geq \frac{1}{\epsilon(r)}\left(\frac{\sum\limits_{1\leq d\leq \frac{r}{|r|^{1/2}|+1}}|h^{*}(d)|}{\sum\limits_{n\leq r}|h^{*}(n)|}\right)$$

tends to infinity as $r \to \infty$ since by (2.3) the expression in the bracket does not tend to zero as $r \to \infty$ This completes the proof of Theorem 2

Agnew [6] showed directly that, for r > 0 the Cesáro and Riesz transforms $C_r(n)$, $R_r(n)$ respectively of a given series $\sum a_n$ are equiconvergent i.e $C_r(n)$, $R_r(n)$ exist for each n and

$$r \stackrel{\lim}{\to} \infty \left(C_r(n) - R_r(n) \right) = 0$$

These concepts are applied to arithmetic summation methods (I) and (D, h(n)) for particular values of h(n) by Jukes [7] He has found different conditions under which the equiconvergence of $\frac{6}{\pi^2}(I)$ and $\left(D, \frac{\mu^2(n)}{n}\right)$ have been established. The $\left(D, \frac{\mu^2(n)}{n}\right)$ and $\frac{6}{\pi^2}(I)$ transform are given by

$$b_{nk}=rac{k}{n}\sum_{r\leq rac{n}{k}}\mu^2(r), \ \ C_{nk}=rac{6}{\pi^2}rac{k}{n}\left[rac{n}{k}
ight]$$

respectively Let $M_2 = \lim_n \sup \sum k \left| \bigtriangleup \left(\frac{b_{nk} - c_{nk}}{k} \right) \right|$

$$A_2 = \lim_n \sup \left| \sum_{k=\infty}^n \frac{ka_k}{(n+1)} \right|$$

THEOREM C [7] Tauherian constants M_2 do not exist for comparisons of conservative matrices with non-conservative matrices

THEOREM D [7] The $\left(D, \frac{\mu^2(n)}{n}\right)$ and $6/\pi^2(I)$ transform are not equiconvergent whenever $A_2 < \infty$

We have proved (see Kuttner and Sukla [8]) that

THEOREM E. The (D, h(n)) is conservative if and only if $\sum_{n=1}^{\infty} |h(n)| < \infty$ It is to note that if part of the above theorem was proved earlier by Jukes [9] See S. L. Segal, *Math. Reviews* 86e 11093 (May 1986, p 1864)

THEOREM 3. The (D, h(n)) and (I) are not equiconvergent whenever $A_2 < \infty$ and $\sum |h(n)| < \infty$

PROOF. By Theorem C since (I) is not conservative and (D, h(n)) is conservative for $\sum |h(n)| < \infty$ whenever $A_2 < \infty(D, h(n))$ and (I) are not equiconvergent

From Theorem E also we get that the following theorem of Jukes as corollaries

COROLLARY 1. The methods $\left(D, \frac{\mu(n)}{n}\right)$ and $\left(D, \frac{\lambda(n)}{n}\right)$ are not conservative

PROOF. Since $\sum_{n=1}^{\infty} \frac{\mu(n)}{n}$ and $\sum_{n=1}^{\infty} \frac{\lambda(n)}{n}$ are not absolutely convergent. So by Theorem 3 the result follows.

COROLLARY 2. $(D, \mu^2(n)/n)$ and $(D, \in \lambda(n)/\pi^2(n))$ transforms are not equiconvergent whenever $A_2 < \infty$.

ACKNOWLEDGMENT. We are thankful to the referee for his valuable suggestions for the improvement of the paper

610

REFERENCES

- INGHAM, A E, Some Tauberian theorems connected with prime number theorem, J. of London Math. Soc. 20 (1945), 171-80.
- [2] SEGAL, SL, Summability by Dirichlet convolution roc, Camb. Phil. Soc. 63 (1967), 393-400
- [3] SEGAL, S.L., On the Ingham summation methods, Canadian J. of Math. 18 (1966), 97-105
- [4] SEGAL, S L., A second note on Ingham's summation methods, Canadian Math. Bulletin 22 (1) (1979), 117-20.
- [5] SUKLA, I.L., Limitation theorem for (D, h(n)) summability, J. of Indian Math. Soc. 48 (1984), 101-105
- [6] ANGEW, R.P., Equiconvergence of Cesare and Riesz transforms of series, Duke Math. J. 22 (1955), 451-60
- [7] JUKES, K.A., Equiconvergence of matrix transformation, Proc. Amer. Math. Soc. 69 (2) (1978), 261-70
- [8] KUTTNER, B and SUKLA, I.L, On (D, h(n)) summability methods, Proc. Camb. Phil. Soc. 97 (1985), 189-93
- [9] JUKES, K A, On the Ingham and (D, h(n)) summation methods, J. of London Math. Soc. (R) 3 (1971), 699-710