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ABSTRACT. We give a simple necessary and sufficient condition for the existence of distribu-

tional regularizations. Our results apply to functions and distributions defined in the complement

of a point, in one or several ariables. We also consider functions defined in the complement of a

hypersurface. We apply these results to the existence of distributional boundary values of harmonic

and analytic functions.
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1. INTRODUCTION
The distributional regularization of functions with non-integrable singularities is an important

and mostly well-understood topic. In its simplest form, the problem is to assign a distribution

] E 9’(R) to a function f, defined and locally integrable on R\ {z0} in such a way that ] coincides

with f on R \ {Zo}.
Many textbooks on the theory of distributions have sections dealing with this regularization

problem, where one usually finds conditions that guarantee the exist.ece of a distributional regu-

iarization and where one can find examples of functions that do not admit regularizations. As far

as we know, however, there is no place in the literature where one can find a simple necessary and

sufficient condition for the existence of a regularization.
The purpose ofthis article is to give such a criterion for the existence of regularizations. Actually

our result applies to a somewhat more general situation, namely, if f E :iT(R \ {x0}), when is there

an extension ] e :/)’(It) such that ]lR\{=o} ?
The answer is obtained by using the recently developed theory of distributional asymptotic

expansions as presented by Estrada-Kanwal I1, 2]. It is well known that if j’ is locally integrable

in R \ {x0} and if xo is an algebraic singularity of f in the sense that f(x) O(ix x01-), as

x --, x0, for some a e R, then f admits a regularization in (R). It is also well known that the

converse does not hold. However, as we show, the existence of regularizations is equivalent to the

order relation f(x) O(Ix xol-a) not in the ordinarll but in the distributional or average sense

In the second section we define the order relations f(x) O(Ix- x01-a) in the distributional

or average sense. By using the ideas of the theory of distributional asymptotic expansions we show
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how order relations can be defined by one of two equivalent procedures, namely, by considering
the parametric behavior or by considering the behavior of primitives. In the third section we show
how the results can be extended to the regularization of generalized functions of several variables
with a singularity at the origin. Singularities located on a hypersurface of R are considered in

section 4. In the last section we apply these results to the existence of distributional boundary
values of harmonic and analytic functions.

2. CHAB.ACTEBJZATION OF REGULARIZABLE DISTRIBUTIONS
In this section we study the behavior as z -- 0+ of dstributions defined on x > 0 and this allows

us to characterize those distributions that admit a regulafization in/)(R). We start by clarifying
the notation.

Let (a, b) be an open interval, finite, semi-infinite or infinite. The spa/)(a, b) consists of those
smooth functions with support, supp {z e (a,b) z) 0) compact, the closure being taken
in (a, b). This space carries the standard Schwartz topology, and I)(a, b) ks its dual, the space of

standard distributions on (a, b).
The space (a, b) is the space of all smooth functions on (a, b), without restriction of its support.

This space is equipped with the topology of uniform convergence of all derivatives on compacts of

(a,b). Since the inclusion of "D(a,b) into (a,b) is continuous and has dense image, it follows
th’at the dual space ’(a, b) can be identified with a subspace of/Y(a, b), namely, the subspace of
distributions with compact support in (a, b).

If (a, b) ks finite we can define the space E[a, hi, formed by the smooth functions on [a, b] (at the
endpoints we ask for the existence of the one-sided derivatives). The topology of [a, b] is that of
the uniform convergence of all derivatives on [a, b]. The dual space ’[a, b] can be identified with
the closed subspace of ’(R) formed by those distributions f with supp f _c [a, b].

Finally, the space (a, b) is formed by those smooth functions for which the seminorms

where p.(x) are any continuous functions defined in (a,b) that satisfy pt(z) > 0, a < z < b and

() I-ai- +o(l-al), x -- a, if lal < ocor ()=
and similarly pt(x) Ix- bl- + O(Ix- bi), x b, if tbl < ov or p(x) Ixt + O(Ixl-), as

x b if Ib vo. If (a, b) It we obtain the space q’(R) of tempered distributions, see Estrada-
Kanwal [2], while if (a, b) is a finite interval we obtain the space of regulaxizable distributions on

(a, b), introduced by Orton [3] with a somewhat different notation. Indeed, if (a, b) is a finite interval

then the inclusion of ,.q(a,b) into [a,b] is continuous and thus, by duality, we obtain a canonical
projection r: .’[a, b] q(a, b) which is onto and whose kernel consists of the distributions with

support contained on the two point set {a, b}. Hence, ,.q(a, b) is the subspace of :D(a, b) formed by
those distributions that admit extensions to

It is also convenient to consider the space T#(a, b} formed by those smooth functions defined in

(a, b) that show the behavior of the space at x a and that of the space j at x b, where 1

corresponds to T(a,b), 2 corresponds to f.(a,b), 3 to 8(a, b) and 4 to [a, b]. When

4 it is better to use the notation 41[a, b). These spaces were introduced by Estrada-Kanwal [4]
and play an important role in the study of integral equations ins of distributions.

The regularization problem we want to consider is the following. If f is a distribution of the

space/)’(0, vo), when is there an extension ] e Tr(R) such that ]1{0,) f ? Observe that if such
extensions exist then we can find an extension ] with support in [0, cx), that is, ] e [0, cx).
Alternatively, we would like to know when the distribution f e :/T(0, vo) belongs to/3(0, oc). Our
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characterization uses the distributional version of the Landau order relations.
DEFINITION. Let f 6 (0, or). Let 6 R\ {-1,-2,-3,...}. We say that f is big O of x

as x 0+ in the average or distributional sense if there exists n 6 N such that every primitive of
order n of f, F, is an ordinary function near x 0 and satisfies

F(x) () + O(+"), as x 0+, (2.2)

for a suitable polynomia/p of order n 1 that depends on F. In that case we write

f(x) O(x") (C), z --* 0+. (2.3)

The notation f(x) o(x) (C), as x 0+ is defined similarly. The letter (C) refers to Cesro.
We suppose c -1,-2,-3,... to avoid the consideration of the primitives of z-,x-2,x-n,

Observe that in (2.2) we have - 0 and thus F-p is a primitive of order n of f. Therefore,
the definition can be restated by saying; that there exists n 6 N and a primitive of order n, F, such
that F(x) O(za+"), x -- 0+.

EXAMPLE. Consider the function f(z) x-2e1Ix sin el/z. Then )’(x) is not O(xa) as x 0+

for any c in the ordinary sense because I/(x)l grows very fast as x 0+. However, since F(x)
cose/x is a primitive of f, we obtain that on the average f(x) is O(x-l-), as x 0+, for
0<t<l.I

This notation is related to the idea of distributional point values and limits introduced by
Lojasiewicz [5]. Indeed, the distribution f(x) has the limit L, as x --, 0+ if and only if

lira f(x)= L (2.4)

in )’(0, oc), that is, ff and only if

lira (f(ex),eh(x)> L 4(x) dx, 6 D(0, oo). (2.5)

However, as Lojasiewicz shows, lira .f(x) L distributionalIy if and only ff there exists a

primitive of order n of f, F, such that

lim
n!F(x) L, (2.6)

x-.O+

namely, if and only if

f(x) L + o(1) (C), as x --, 0+. (2.7)

Actually, the parametric behavior of f(ex), as e 0+, and the behavior of f(x) as x 0+ in the

(C) sense are also rdated for the order relations. As we shall show, the statements f(x) O(e),
-, 0+ and f(x) O(x), (C) as z -, 0+, are equivalent. In order to show this result we need

some preliminary results.

LEMMA 1. Let A be a flmction defined in (0, vo). Suppose that for each compact K C_ (0,)
we have

A() A() + O(), as 0*, (2.S)

uniformly on p e K. If a < 0 then

A() O(*), as 0+, (2.9)

while ff > 0, then there exists a constant a such that

A(t) a + O(), as 0+. (2.10)
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PROOF. Taking K [1/2,2], we can find a constant M and so > 0 such that

IA()- A()] _< Mea, 1
O<e<o, <p_<2.

Suppose first that a < 0. Let p E [, ]. Then if 0 < e <_ eo,

ThUS if $ < ’0

and consequently

M< / Ia(o)l,I --2

A() O(e’), a ---+ 0+.
When a > 0 we proceed as follows. Take p e [, --!:-r_]. Then ff 0 < e _< o,

[A() A($)[ < - 1(max{e, 6})a 0,
,6--,0 ,6-.,0

and it follows that the limit

a limA(e) (2.13)

xists. Taking the limit as p 0 in (2.12) we obtain

A() a + O(t),

Observe that we just need to require (2.8) to hold uniformly for mine compact K with non-empty
interior.

The following lemma is easy to prove, but will be useful.
Ilg 2. Let A be a topologicaJ space, let 0 e A and let @:A \ {Ao} (0, ). Let

{f}Ae^\{o} be a family of distributions of D’(a,b) and let {F}e^\{o} be a family of first order
primitives: F A. Suppo

A(x) O((A)), a A o, (2.4)

distributionally. Then there exists a function A: A \ {Ao} -+ R such that

F(x) A(A) + O(#(A)), as A -+ A0, (2.S)

diributionally. 1
We can now prove the following
THEOREM 1. Let f e D’(0,) and a R \ {-1,-2,-3,...}. Then

(2.16)

- 2OM
[A(pe)- A()[ <

5=0
M(2P) < ’-2-e (2.12)
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distributionally if and only if

f() o("), (c), as 0+. (2.7)

PROOF. Suppose first that (2.17) holds. Then there exists, e N and a primitive of order n
of f, F, which is continuous on (0,1] and satisfies

IF(x)l _< Mx+" 0 < x <_ 1, (2.18)

for some constant M. We may suppose a + n > O.
Let e D(O, oo). Let c > 0 be such that suppb c_ (O,c]. Then if < c-1,

<_ Me+"fx+"lx)} d,x,

so that

F(ex) O(ea+), as e 0+ (2.19)

(f(ex), d?(x)) (-1)"s-"(F(ex), (")(x)) 0("),

and (2.16) follows.
Conversely, suppose (2.16) holds. Then there exists n 6 N and a primitive G(x, ) of order n of

oa(x,e)f(z) with respect to x, J, f(x), such that

G(:,) 0("), (2.2o)

< z < 1. But rding to the Lemma 2, if F is a primitive of order n of f, thenuniformly for i
there exist functions a0(t),a,(e),... ,a,_(e) such that

a(x, ) e-"F(x) + ai(e). (2.21)
i=0

Hence
.-1

F(x) + _, gal(e)za O(e’+n), (2.)
=0

ufomly on z 6 [,2]. t Aj(e) aj(e)$"-. en reMg x by x d upi M two

derem ways (2.22) we obtn:

--1

F(x) + A()/ 0(+"), (2.2)
i=0

F(x) + Ai() 0("+"), (2.2)
i=0

thus
n-1

,(A:(pv) Ai())//x 0(’+"). (2.24)

Taking n different values of x and solving the corresponding linear system arising from (2.24), shows
that each term of the sum is O(e+"). Hence

Al(p Ai(e + O(e+"-i), (2.25)
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for 0 _< j <_ n- 1. This holds uniformly for p E [, 2]. Using Lemma 1, we can find constants

no,... ,a-1 such that

A() a + O(+-), - 0+, (2.26)

where we take a 0 if + n j < 0. Therefore,

F(x) + aix O(e"+’*), e 0+. (2.2?)
t=0

Taking x 1 and replaci e by x we thus obtain

n--1

r(x) + _, ,x 0(/"), 0/, (..S)

ad (2.17)follows.
Summarizing, the distr/bufiona/relation .f(x) O(x), x 0+, admits tw equivalent interle-

tations one in terms of primitives and one in terms of parametric behavior.
We can now give our characterization of feeble distributions. As it is well imown, if f is

locally integrable in (0,) and has an algebraic singularity at x 0 in the nse that f(x) O(x ),
as x 0+ for some a < 0, then f admits an extension to :D’(Xt). However, there are examples
o$ l(mally integrable ftmctioas, that admit extensions to TV’(l), but that do not have algebraic
singularities at x 0. Nonetheless, we have
THEOREM 2. Let f e ’(0, o). Then ] admits an extension to :IT(R) if and only ff there

exists a e l \ (-1,-2,-3,...} such that f(x) O(a), as x 0+, distributionally, in the sense

either of the two equinralent conditions (2.16) or (2.17) is satisfied.
PROOF. Suppose ] admits an extension ] to 2Y’(R). Then these exists n e! N and a primitive

of order n of ],F, which is continuous on [-1,1]. But then F(x) O(1) as x 0+ and since F is

a primitive of f on (0, o), it follows that if 0 < f < 1, then

I(x) o(-"-), (c), as 0/. (2.)

Conversely, if I(x) O(g) (C), as x 0+, some ( e R \ (-1,-2,-3,...} then there
n N and a primitive of f on (0, ), F, which is eontinuous on (0, o) and satisfie F(x)
as x 0+. Then F admits an extension to X)’(l.), say . It follows that ] (") is an exteion

3. IGUZATION IN SEVERAL DIlYIENIONS
Our next aim is to coide the regul&ization of generalized ftmcti(ms of several variables. We

shall apply the theory of topological tensor products and thus we start with the vector -alued
distributions.

Let E be a Banach space with norm I] l]. Then we can consider the spaces i((a,b),E) of

vector valued distributions. The space :((a,b),E) can be considered as the space of continuous

linear operators from i(a,b) to E or, alternatively, as the topological temor product X:i(a,b) E,
completion of the algebraic tensor product Tv(a,b)@E equipped with the -topology: see Treves [6].

The aysis of the regularization of the distributions with values in a Banach space is com-

pletely analogous to the analysis of the previous ,’tion. Indeed, if f ’X:r((a,b),E) then

O(x) (C), as x 0+, means that thee exists n e N and a primitive of order n of f,F, such

that llF(x)ll O(x’+’), as x --, 0+. Actually, it is not hard to see that Lemmas 1, 2 and Theorems
1 and 2 remain valid in this case.

Summarizing.
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THEOREM 3. Let E be a Banach space with norm II. Let f e D’((0, o), E). Then the

followin are equivalent:
1. f admits an extension to /(R, E).
2. f is algebraically bounded in the (C) sense at z 0,

f(x) O(x) (C), as z 0+, (3.1)

for some a 6 R \ {-1,-2,-3,...}.
3. f is algebraically bounded parametrically at z 0,

f() O() as -, 0/, (a.)

for some a E R \ {-1,-2,-3,...} in the sense that if 4 6 :D(0, o) then

Let us now consider the regularization of distributions of the space D’(R" \ {0}). Ftmctions and
distributions on 1t" \ {0} and on It", of course, can be d,-ibed by using polar coordinates

x rw, r lxl, w 6 S, (3.4)

where S {w E It" Iwt 1} is the unit sphere. A test function x) of the space D(R" \ {0)) can

be considered as a test function (r,w) q(r,w) of the spa D(0, oo) :D(S) D((0, o) x S).
Similarly, a distribution f e /Y(It" \ {0}) corresponds to a distribution ](r,w) of (D(0,oo)
v(s))’ ((0, oo) s) given by

if(x), (x)) (r"-’j(r,), (r,w)). (3.S)

The factor r"-1 is the Jacobian of the transformation (3.4):

dx r"-1 dr do(w), (3.6)

where a is the surface measure on S.
The situation in It" is somewhat more complicated. The application 4’ - allows us to identify

)(R") with a closed proper subspace of :D41 [0, oo) ) (S). Therefore, each. g 6 (/)4,[0, oo) ) )(S))’
admits a restriction r(g) 6 19’(R"). Conversely, by the Hahn-Banach theorem, each f
admits several extensions ] 6 (D4][0, o) D(S))’.

Therefore, a distribution f 6 :D’(R" \ {0}) admits an extension in ’(R) if and only if the

corresponding distribution ] 6 D’(0, o)D’(S) admits an extension in the space /Y [0, ov)’(S).
Theorem 3 is not directly applicable to distributions ] 6 ’(0, oo) D’(S) ’((0, oo), :D’(S))

because D’(S) is not a Bana space. However, D’(S) is the inductive limit of the Banach spaces

(C(S)) as k 0. Hence, the relation ](,w) O(z) in D’((0, o),D’(S)) implies the existence

of k e N such that the relation holds in ’((0, oo), (C(S))’) and, consequently, the existence of

an extension in the space/Y4([0, oo), (C(S))’), and the latter is a subs of ’4,([0, oo),D’(S)).
Therefore, we have
LEMMA 3. Let ] 6/)’((0, o), D’(S)). Then the following are equivalent:

1. ] admits extension to ([0, o), ’(S)).
2. There exists ( 6 It \ {-1,-2,-3,...} such that

](r,w) O(r) (C), as r 0+. (3.7)
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3. There exists ( E l. \ {-1,-2,-3,...} such that

](r,) 0() as -. 0+, (3.8)

distributionally, in the sense that if (/)(0, 0) then

(](r,,), ,(r)) 0()

(s).
The lemma immediately gives
THEOPM 4. Let f ’(R \ (0)). Then the following are equivalent:
1. f admits an extension to (BY).
2. There exists a 6 R \ (n 2, n 3,...) such that

$(r) o(") (), a - 0/, (3.s)

in the sense that there exists p N and a hmction F that satisfies (r,) O(ra+) as r --, 0+

d -7 (’)"
3. There exists R \ {n- 2, n- 3,...) such that

f(rx) O(a) as --, 0+ (3.9)

dlstributionally, in the spa I(R \ (0)). I

4. SINGULAR HYPEIURFACES
We now consider the regularization of distributions defined in the complement of a hypersufface.
Let us start with some remarks on the theorem 3 on regularization of vector valued distributions.

The result applies if E is a Bana space and, as we observed, it can be extended to the case when
E is an inductive limit of Banach spaces. However, it does not apply to other topological vector

spaces, as the next example shows.
EXAMPLE. Let E C(I.) be the FreShet space of continuous functions on R, with the

topology of uniform convergence on compacts. Let f E I)’((0, or), E) be defined as

f(,) -’(u-), > 0, t, (a.)

where C(tt) is a continuous ftmction with compact support in [0,1]. Then f admits a regular-
ization,

](,) pl(-’())(u-), (,) R (4.2)
n’-0

in the space l’(l, E). But there is no ( R such that f(x,y) 0() as 0+.
Actually, the same example shows that there are distributions in /)’((0, vc) x R.) that admit

extensions to I)’(P R) but do not satisfy f(ex,y) O(e), as 0+, for any . The appropriate

criterion takes the following form.
THEOREM 5. Let I’((0, oo) R"-I). Then f admits an extension to I’(IY) if and only ff

for each compact K C_ R-1 there exists g R such that

(y(x,y),h(x,y)) O(g), as -, 0+, (4.3)

for each /3’((0, or) R’-1) with supp C_ (0, oo) K.
PROOF. Let l)g ( E (R-) supp C_ K), for K compact. We endow 1)g with the

topology of the uniform convergence on R-. Then g is a Freshet space and consequently the
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theorem 3 applies to/)’.. Hence (4.3) is equivalent to the existence of a regularization in

for each K and since D’(R"-) is the inductive limit of the/)’K as K /, it follows immediately
that the existence of a regularization in/T(R") /)’(It) /)’(R"-1) is equivalent to the existence

of regularitiom in D’(R) YK for ea K compact.
Observe that (4.3) is equivalent to the order relation

f(x,y) O(xaK) (C), as = 0+ (4.4)

u(x) 0, (4.5)

for some smooth function whose gradient Du does not vanish near . Let Ro be the subregion of
R where u is defmed and where its gradient does not vanish.

It follows that if I1 is small enough, the equation

u(x) e (4.6)

defines a smooth regular hypersurface E,. We may suppose that E, c_ R+ if > 0 and E C_ R_ if

<0.

Observe that if (vl,..., v,_) is a local coordinate system in E, then we can use (vl,.. v.-, u)
as a coordinate system in Ro and use (vl,..., v-1) as a local coordinate system on E. if Isl is small.
Therefore, any test function in :D(E, nRo) can be considered, by using this local coordinate system,
as a test function in D(E f Ro) and, by duality, the same is true of distributions on/Y(E, R0).

Let f be a distribution of the space/Y(R \ ). We would like to find a necessa and sufficient
condition for the existence of an extension on 2)’(R).

If () has suppb C_ f Ro, then we can define the distribution of one variable/ on

’((-,0) v (0, o).) for 0 small by

(f(t), (t)) (f(x(,..., v,_, u)), J0(,..-, (4.7)

where J is the Jacobian of the transformation x x(vz,..., v-x, u). Then f admits an extension

to/)’(R0) if and only if] admits an extension to/7((-0, 0)) for each such b. This is equivalent
to the extension of f considered as an element of the space/T((-f0,0) t3 (0,o),D’(E R0)). Thus,
we obtain
THEOREM 6. Let R be a region of R and be a smooth regular hypersurface that divides

it into two parts R+ and R_. Let f be a distribution defined in R \ E R+ U R_. Then f
admits an extension to/)’(R) if and only if for each compact subset K of there exists ag e
R \ (-1,-2,-3,...} such that

//(t) o(:), as - 0, (4.8)

distributionally, in D’((-0,0) (0,0)) for each D(E) with suppO c_ K, where u is a smooth
function that represents in a neighborhood of K. Condition (4.8), in turn, is equivalent to the
condition

f,(t) O(]tlc) (C), as 0, (4.9)

in the space 2)’((0, oc), I)’g) for each compact K _C R"-.
The above analysis applies to distributions defined in R \, where is a hyperplane. However,

as we now show, the same results hold if is a smooth regular hypersurface.
Let R be a region of R". Let E be a hypersurface of R", contained in R, that divides it into

two subregions R+ and R_. Suppose is smooth and regular, in the sense that at each point of
there is a well-defined normal vector. This means that locally E is given by an equation of the form
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for all such . I
Two remarks are in order. First, the hypersurface E might be compact, in which case we can take

cK C, a fixed constant. Sexmd, observe that we did not assume that f has a restriction to E for
0 < II < 0 that is why we used the atmiliazy function . However, when f admits a restriction g
tothe hypersurface Et, 0 < t < Is0[, then g defines a distribution of IT((-0,0)u(0,0), IT(ENR0))
and it thus follows that the existence of the regularization is equivalent to the condition gt O(It[aK)
distributionally as t --, 0.

5. DISTRIBUTIONAL BOUNDARY VALUES
Let R be a region of R" and let E is a smooth regular hypersurface that divides it into two

subregions R+ and R_. Let u be a smooth function with never vanishing gradient on the subregion

R0 such that the equation u 0 represents E f R0. Let f E IT(R \ E). We say that f has
distributional botmdmT values f+ E D(E) from the positive side if for each K IT(E) and for each
u that represents E in a neighborhood of suppb the limit

(f+, b) .+m f,(t) (5.1)

exists in the dtstrbutiona/sense. The distributional boundary value f_ from the negative side is

dfmed similarly as the limit of f(t) as --, 0-.

As a simple corollary of the results of the previous section, it follows that if the distributional
boundary values f+ and f_ exist then f admits an extension to IT(/l). The converse is plainly false

as the function f(z, y)
1

considered as a distribution on/Y(R2 \ R) shows. The existence of
distributional boundary values is a much stronger condition than the existence .of an extension.

It is then quite interesting that in some case the mere existence of an extension implies the
existence of boundary values.

Indeed, let B ((zt,..., z) R +--. + z2, < 1} be the unit ball of R" and let
S {(zI,..., z) R +-.-+ z2, 1} be its boundary. Let U be defined and harmonic in

B. Then it is known, see Bremermmm [7], Estrada-Kanwal [8], that the distributional boundary
values

u() =,_m_ (), s, (5.2)

defined as

for /)(S) exist if and only if there exist M and/ such that

M
It()l < (i lxi)’ Ixl < . (5.4)

As we pointed out, the existence of the distributional limit (5.2), or equivalently, the bound

(5.4) imply the existence of extensions of U to IT(R=). Actually, we can take extensions that
satisfy Uil-\s 0. Interestingly, the converse also holds.
THEOREM 7. Let O be a harmonic function in B {(xl, x,) E R x2 +---+ x2, < 1}.

Then the following are equivalent:
1. U has distributional boundary values at S OB.
2. There exists ]9 R such that

(r) o((1 r)-), as r - -, (5.5)

uniformly on w 6 S.
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3. U admits an extension to D’(R").
4. There exists B 6 R such that for each b E T)(S),

<u(r),()) o(( r)-), (c), as r -. (s.6)

PROOF. As we explained, (1) and (2) are equivalent and from the results of the previous

section so are (3) and (4). Also, (I) implies (3) in general, whether U is harmonic or not. Thus, R
remains to show that (3) implies (1). So suppose (3) holds.

Let V be an extension of U to T’(R"). We may suppose V(x) 0, if Ixl > I. Then V is

harmonic in R" \ S, so f Av has support on S. Iience there are distributions 0,..., fk e ’(S)
such that

f fo(S) +/,el. $(S) +... + fkd 6(S), (5.7)

where the multilayer distributions f#d 6(S) are the distributions of Tr(R") defined in Estrada-

db(w)---> (5.)

where b e Z)(R"), d]dn is the derivative in the normal direction to S and where the evaluation on

the right is on Z)’(S) x :D(S).
Let

where C,

Let

K(x) Clxl2-", n > 2, (5.9a)
1

K(x) log Ixi, n 2, (5.9b)

1
) and, is the area of S, be the fundamental solution of the Laplace equation:

(

Ag(x)--- $(x). (5.10)

v K, f (K ld: (s)). (s.)

Then V is harmonic in R" \ S and if Ix # 1 then

Vl(x) (-1)y fj(w), (5.12)

dJK(w- x) >But it is easy to see that the function f#(w), dn
satisfies an estimate of the form

l<f(w)’ d’K(w- x) > < M’(1-
dn

,x[<l,

for some M#, B#. Thus V has distributionaa boundary limits

(5.13)

But A(Vt V) 0 and it follows that

V Vo+ V, (5.15)

where V0 is harmonic in R". Since V0 also has (ordinal!) boundary values at S it follows that so

does V. But U(x) V(x) if [xl < 1 and the result follows. I

V(w) m_ V(rw). (5.14)
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A similar analysis gives the following result on the distributional boundary values of analytic
functions.

THEOREM 8. Let ft be a region of C and let 7 be a smooth regular curve in ft that divides
fl into two subregions fl+ and ft_. Let F be analytic in f/\ . Then F admits an extension to

D’(f/) if and only if F has distributional boundary values F+ and F_ in D’(-/). U
The jump of F across /is IF] F+ F_, a quantity that can be defined even if F+ and F_

do not exist as the distributional limit lin_.o/(F,#(t) F,/(-t)). Using the ideas of the proof of
Theorem 7 we can show that the existence of the jump IF] E/Y() of a sectionally analytic function
F implies the existence of an extension to/Y(ft) and consequently, the existence of the boundary
values F+ and F_.
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