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ABSTRACT. Under weaker conditions of probability,we discuss in this paper the complete con-

vergence for the partial sums and the randomly indexed partial sums of B-valued /)’-mixingale

sequences.
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1. INTRODUCTION AND MAIN RESULTS
Since the definition of complete convergence for real random variables was introduced by ttsu

and RobbinsIll,there have been an extensive literature in the complete convergence for indepen-

dent and dependent random sequences,see partially the references listed.In particular,Yang[5,6
ha. discussed the complete convergence for B-valued independent random elements.Yu[ll] ha

co,sidered the complete convergence for martingale difference sequences, PeligradI7 and Shao[S}
have obtained the complete convergence for C-mixing sequences,respectively.tlowever,to our best

acknowledgement,there are still few articles on the complete convergence for L-mixingale (1 _<:
p < 2) sequences,which include uniformly rnixing (called also -mix;ing) sequences,martingale

difference sequences,linear processes and other random sequences (see I0]).In this paper,under

wakcr conditions of probability,we discuss the complete convergence for the partial sums and

the randomly indexed partial sums of B-valued L-mixingale sequences, and give the complete

convergence for B-valued martingale difference sequences as corollary.The methods used here are

different from those used in the literature.

Next,let us introduce some notations.

Let B be a real Banach space.B is said to be q-smooth(1 < q _< 2) if there exists a constant

C > 0 such that for every B-valued L -integrable martingale difference sequence (D," > 1

Ell D, II’ < C, EIID, ", , > ,.
lct {X,,n > l} be a sequence of B-valued L -intcgrable (1 < p < 2) random variables on

a probability space (I,.,P), and let {Y’,,-cx < n < o} be an increasing sequence of sub a-

field of Y.Then {X,, Y,} is called a LV-mixingale sequence if there exist sequences of nonnegative

constants C, and (n),where (rn) 0 as m ov ,which satisfy following properties"
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(i) IIE(XIT_.,)I, <_ (m)c and

(ii) IIx,,- (x,,l:r,,,,,,)ll, _< O(,r, +
for all n > and m > O,where IlXll, (EIIXll) ’/".

S is the class of all positive non-decreasing function on R+ [0, o)(see [9],p.228 or [5,6])
satisfying the following conditions:

(i) There exists a constant, k k() > 0 such that

(=v) _< ((=) + ()), v=, v n+.

(ii) z/qb(z) is non-decreasing for sufficiently large x.

From now on ,we will use C to denote finite positive constants whose value may change from

statement to statement .For real number z, Ixl denote the largest integer k _< x.I(A) represent

indicative function of set A. Put S X,.

THeOreM 1.1. bet < q2,0< < - 1,1 p 2, d= or-l,and let B be a

q-smooth Banaeh space.Supppose {X,} is a B-valued L-mixingale sequenee,() S.If

e(llX, ll’(e(llX, ll)) - > =) c=-’’ (.)

for sufficiently large x,n and there exists a X(1 A p) such that + (1 t)A > 0 and

([n’l) mx C < (1.2)
l<t<n

q-twhere 0 < < ii (i,then for every > 0 we have

lp(m IISll > (n(())) ’/’) < (.3)

in particular - P(IIS.II _> (,((,))’)’/’) < oo. (1.4)
n=l

/2

THEOREM 1.2. Under the assumptions of THEOIEM 1.l,if there exists a A(1 A p)
satisfying

m2([2"]) max C < , (1.5)

then for every > 0 we have

-1p(up[ll&ll/([(k)))’/’ )< . (1.6)
n=l

If {X,,,n 1} is a -integrable B-valued martingale difference sequence,then C
(EIIXII) v, (m) 0 for m 1.

COROLLARY 1.1. Let < q 2,d or-l,and let B be a q-smooth Banach

space.Supppe {X,, ,,n 1} is a B-valued martingale difference sequence,(z) S.For 0 <
< and suciently large z and n,if (1.1) is satisfied,then for every > 0, we obtain that

( .z),(.4) ,a (.6)
RMARK 1.1. For 0 < < 1,by C-inequality and properties of (z), we can prove

hal, the results of THEOREM 1.1,THEOREM 1.2 and COROLLARY 1.1 hold for y B-valued
rando,n variable sequence {X,,n 1} wihou mixing condition (1.2) and (1.5).

REMARK 1.2. Real uniformly mixing sequence (definition see [7] or [s],[x01) (x, ,} i

L -mixingale,where C, 2(EX)/,(m)= /(m),see [0,p.9].
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REMARK 1.3. YangI51 has proved that (1.3) and (1.4) hoM for B-valued independent

zero mean random element sequence {X.} in type 2 Banach space under moment conditions
stronger than the conditions of COROLLARY 1.1.

2. PROOFS OF MAIN RESULTS

We only prove the case in d for Theorem 1.1 and 1.2,the proof of the case in d -1 is

analogous.

LEMMA 2.1.([9],Lemma 1) Let (.) E S, 6 > 0,then for any z > 0,

c(=) < (=(=)) <

c() <_ (/()) < cc);

c() < () _< c().

PROOF OF THEOREM 1.1. Notice first

Obviously

-P(max IISll >
n=l l<k<rt

_< .=,E -P(,<<.max IIA,II >_ ’ (=(=))’/’)
.:, ;p(,<m<x. IIcll _> (())’/’)

g I+Is+13.
the Markovian inequality,/)’-mixingale property and the properties of (x),we have

, _< c (,,(.//-#(
<_ c (())-/’(: IIX,- ECX, l,+[..])ll)

n=l =1

max C,
"-1

< C 2 (InoI) max
rt=l l<<n

Similarly,we can obtain

13 < C (lntl) max C < oo.
l_<,<n

< I,i
Clearly,X, Y,,. + Z,,.,Wt, U,, + V,,.For fixed t, (U,,E+, _< _< n} and {V,,,.,+t, <
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__< n} are martingale difference sequences. Then

l=-[nPl+l l<k<n t=l

g I + I.
Since B is q-smoothable,therefore using Doob inequality,the monotone property

and iemma 2.1 we have

n=l l=-[nP]+ t=l

n=i

n=l =1

By applying the definition of (x) and Lemma 2.1,we can obtain

e() ce (2.)

for ,/ > 0 and sufficiently large z.

By the Markovian inequality,the definition of $(z),Lemma 2.1 and (2.1) we have

The proof is completed.

PROOF OF THEOREM 1.2. First,by the monotone property of (x) we have

1’(sup(ll&lll(k(k))’/’) >__
n=l k>n

<_ P(sup(llSll/(k(k))’/’) >_
,=0

< C E raP( max (llS, >
m=l 2"5k<2

Observe that for 2 <_ k < 2"+,

,s’ E(x,-
t"-I

iv""l
+ E E (E(x, 13;,+,)-

=-12""1+1 ,=’

+ E
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Then

kpCsup(lls, ll/((,)) ’#) >_ )
n=l k>n

< C mP( max (IIAII > (2())’/’)
m=l m+

+C E raP( max (IIBII >5
+c fmP(.. <<-+,max ([[c[[ >_ 5’(2m(2m)) ’/’)
I+Ir+I.

fly analogizing the proof of I we have

I6 _< C m:Z’f([2’]) max C, < oo.
m=l

By analogizing the proof of Is,similarly, we can obtain 18 < oo.

Let Y,.,, X,/(llX, <_ (2"’(2"))’/t),Z,.,, X,-Y,.,.,,,W., E(X,[+,)-E(XIT,+,_,),U,,-
E(Y,,.IZ+,)- E(Y,.,IZ+,_,),V.,--- E(Z,,..IZ+,)- E(Z,,,.,,IZ+,_,),2" < k < 2"+’,, < <
k, -121 +, _< _< [2a’l. Then

I7 < C m E P(.. maxm=l I=-[2"]41 <k<2m+t *=1

+C E m E P( max E v,,,ll > (2"(’)) ’/’- 2-)
m=l l=-[2a’]+l 2" <k< 2"4 t=l

19 + 1,0.

ly analogizing the proof of h we have

19 _<_ C m2(a+qa+’-q/O((2"’))-q/t + C m2(--’)" < .
llv analogizing the pr-of of Is we have

1,o <__ C m2(-’) + C m2("-‘) j,[((yt)),+t
S. RANDOMLY INDEXED PARTIAL SUMS

Throughout this section let {X,,7,} be a B-valued LP-mixingale sequence (l p 2),
and let {r,, n 1} be a sequence of nonnegative,integer valued random variables.r is a positive

random variable.All random variables are defined on the same probaSility space.

THEOREM 8.1. Under he sumptions of THEOREM 1.2,if there exists some constant

to > 0 such that ,
(3.1)-e(-- < ’0)< ,

n=l

then for every > 0 we have ., 1p(llS,.I >_ ,(.((.)))’/’) < oo. (3.2)
rt

THEOREM 8.2. Under the assumptions of THEOREM 1.1,if there exist constants a, b, t0(0 <
a_<b<oo) such that P(a _< r _< b) and

P(I-- *1 > ,0) <
n=l

then for every > 0 we obtain that (3.2) holds.
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THEOREM 3.3. Under the assumptions o[ THEOREM 1.l,i[ there exist constants b > 0

and e0 > 0 such that P(r _< b) and (3.3) is satisfied,then for every > 0 we have

[P(llS,.,,ll > (((,,))’)’/’) <
n=l n

Obviously,suppose P(r > a) 1 for some a > 0,then for any > 0(e < a) we have

p(r,, < a e) .<_P(l

therefore,if condition (3.3),where P(r _> a) for some a > e0 > 0 replaces condition (3.1},then
TIIEOREM 3.1 still holds.

Similarly,using COROLLARY l.l,we can obtain the complete convergence for the randomly

indexed partial sums of B-valued martingale difference sequences,respectively.

REMARK 3.1. Condition (3.1) and (3.3) are just ones which are usually employed in

literature.

REMARK 3.2. Note that if (x) 1,Lk(x)(Lo(x) max(1,1og x),L log[max(e, Lk_,(x)],
k 1,2,.--),we can derive many significative results from the results of this paper.In addition,

since real space is a 2-smooth Banach space,the TttEOREM and COROLLARY in this paper are

sitable for real valued random variable.
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