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ABSTRACT. In this paper, the concepts of random maximal elements, random equilibria
and random generalized games are described. Secondly by measurable selection theorem, some
existence theorems of random maximal elements for Lo-majorized correspondences are obtained.
Then we prove existence theorems of random equilibria for non-compact one-person random
games. Finally, a random equilibrium existence theorem for non-compact random generalized
games (resp., random abstract economics) in topological vector spaces and a random equilibrium
existence theorem of non-compact random games in locally convex topological vector spaces
in which the constraint mappings are lower semicontinuous with countable number of players
(resp., agents) are given. Our results are stochastic versions of corresponding results in the
recent literatures.
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1. INTRODUCTION

In the recent years, the classical Arrow-Debreu result [1] on the existence of Walrasian equilib-
rium has been generalized in many directions. Mas-Colell [15] has first shown that the existence
of an equilibrium can be established without assuming preferences to be total or tramsitive.
Next by using a maximal existence theorem, Gale and Mas-Colell [9] gave a proof of the ex-
istence of a competitive equilibrium without ordered preferences. By using Kakutain’s fixed
point theorem, Shafer and Sonnenschein {19] proved the powerful result on the ‘Arrow-Debreu
Lemma’ for abstract economy in which preferences may not be total or transitive but have an
open graph. At the same time, Borglin and Keiding [3] proved a new existence theorem for
a compact abstract economy with KF-majorized preference correspondences. Following their
ideas, there have been a number of generalizations of the existence of equilibria for compact
abstract economies. For example, Ding et al [7], Tan and Yuan [20], Tan and Yuan [22-23],
Tarafdar and Yuan [25], Toussaint [26], Tulcea [27-28] proved some very general equilibrium
existence theorems for generalized games (abstract economies) with correspondences defined on
a compact (resp., non-compact) strategy (choice) set of players (agents). These theorems gen-
eralized most known equilibrium theorems on compact generalized games due to Borglin and
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Keiding (3], Shafer and Sonnenschein [19] and Yannelis and Prabhakar [30]. Unfortunately, all
these results mentioned above are deterministic in nature, i.e., the equilibrium does not involve
any random variable from measurable spaces.

On the other hand, Debreu discussed the uncertainty of behavior of an economic activity
in the Chapter 7 of his book [5]. Since then, a series of papers concerning the uncertainty of
behavior of economic actions have been published. For example, Hildenbrand [11] considered
economy in which the preferences are random correspondence. Bewley (2] studied the existence of
equilibrium in abstract economy with a measure space of agents and with an infinite-dimensional
strategy space. Kim et al [12] also proved the existence of equilibria in abstract economy with a
measure space of agents and with an infinite-dimensional strategy space by random fixed point
theorems. In particular, Tan and Yuan [21] and Yannelis and Rustichini [29] also gave some
existence theorems of random equilibria for random generalized games or random qualitative
games recently under the various conditions.

In this paper we shall consider the following problem. The strategy set X; of the ith players
(resp., agents) is a nonempty subset of topological vector spaces, but the constraint and pref-
erences of players (resp., agents) in generalized games (resp., abstract economics) are involved
in the variable of a measurable space (£2,X). Therefore, the equilibrium of generalized games
which involves in a measurable space (£2,X) should be a function of a random variable in the
measurable space (2, £). More precisely, in mathematical language it is formulated as following:
Let I be a (possibly infinite) set of agents and ({2, L) a measurable space. For each i € I, let its
strategy (resp., choice) set X; be a non-empty subset of a topological vector space, X = I;erX;
the product space of {X;}ier and P; : @ x X — 2%i a (set-valued) correspondence. Following
the notion of Gale and Mas-Colell [10] in deterministic case, we have the following definition.

DEFINITION 1.1. The collection I' = (2, X;, P;)icr is said to be a random qualitative
game. A measurable single-valued mapping ¥ :  — X is said to be a random equilibrium of
the random qualitative game I if

Pi(w,$(w)) =0
forallie I and all w € Q.

DEFINITION 1.2. A random generalized game (resp., random abstract economy) is the
family of collection T' = (2, X;; A;, Bi; Pi)ier where I is a (finite or infinite) set of players
(resp., agents) such that for each ¢ € I, X; is a non-empty subset of a topological vector
space and 4;,B; : @ x X = IjerX; — 2% are (set-valued) constraint correspondences and
P;: Q x X — 2% is a set-valued preference correspondence (which are interpreted as for each
player (or agent) ¢ € I, the associated constraint and preference correspondences 4;, B; and
P; have stochastic actions). If the set I of players (resp., agents) is finite, i.e., I = {1,--- ,n},
where n € N is a fixed positive integer, then I' = (Q; X;; A;, B;; P;)iey is also called an N-person
random game.

DEFINITION 1.3. An random equilibrium of a random generalized game I' is a measurable
mapping  — X such that for each i € I,

7i($(w)) € Bi(w, $(w)) and Ai(w,%(w)) N Pi(w,$(w)) = 0

for all w € Q, where 7; is the projection of X onto X;.

We would like to remark that if A;, B; and P; of random generalized game I = (Q; 4;, B;; P:)ier
are independent of variable w € Q, ie., 4i(w,-) = Ai(-), Bi(w,-) = Bi(-) and Pi(w,-) = P;(-),
when B;(£) = clx,B;i(£) (which is the case when B; has a closed graph in X x X;; in partic-
ular, when clB; is upper semicontinuous with closed values), our definition of an equilibrium
point coincides with that of Ding et al [7] in deterministic case; and if in addition, A; = B; for
each i € I, our definition of an equilibrium point coincides with the standard definition in the
deterministic case; e.g., see Borglin and Keiding (3], Tulcea [27] and Yannelis and Prabhakar
[30].
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This paper is organized as follows. The concepts of random maximal elements, random equi-
libria and random generalized games are described. Next by a measurable selection theorem
due to Leese [14], a existence theorem of random maximal elements for L¢-majorized correspon-
dences is obtained. Then we prove existence a theorem of random equilibria for non-compact
random one-person games. Finally, a random equilibrium existence theorem for non-compact
random generalized games in topological vector spaces and a random equilibrium existence
theorem of random generalized games (resp., random abstract economics) in locally convex
topological vector spaces in which the constraint mappings are lower semicontinuous and with
countable number of players (resp., agents) are given. Our results are the stochastic versions of
corresponding results in the literatures.

We now turn to explain some notions. The set of all real numbers is denoted by R. Let A
be a subset of a topological space X. We shall denote by 24 the family of all subsets of 4,
int x(A) the interior of 4 in X and clx(A) the closure of A in X. A subset S of X is said to be
compactly open in X if S is relatively compact in each non-empty compact subset C of X. If §
is a subset of a vector space E, we shall denote by coC the convex hull of C in E. If A4 is a non-
empty subset of a topological vector space E and S,T : A — 2F are correspondences, then coT,
TNS: A — 2F are correspondences defined by (coT)(z) = coT(z) and (T'NS)(z) = T(z)N S(z)
for each z € A, respectively. If X and Y are topological spaces and (£2,X) is a measurable
space, and T :  x X — 2Y is a correspondence, the Graph of T denoted by GraphT, is the
set {(w,z,y) €E A x X xY : y € T(w,z)} and the correspondence T : 2 x X — 2¥ is defined
by T(w,2) = {y € Y : (2,9) € clxxyGraphT(w,-)}. For each fixed w € Q, the graph of the
mapping T(w,-) : X — 2Y is defined by Graph(T(w,-) = {(z,¥) € X x Y : y € T(w,z)}, and
the mapping ¢lT : @ x X — 2Y is defined by clT(w,z) = cly(T(w,z)) for each (w,z) € Q x X.
It is easy to see that clT(w,z) C T(w, ) for each (w,z) € @ x X.

DEFINITION 1.4. Let X be a topological space, Y a non-empty subset of a vector space
E,0:X — E a mapping and ¢ : X — 2" a correspondence. Then

(1) ¢ is said to be of class Lgc (e.g., see Tan and Yuan [20]) if (a): for each z € X,
cod(z) C Y and §(z) ¢ cod(z) and (b): there exists a correspondence 9 : X — 2¥ such
that for each z € X, ¥(z) C ¢(z), and ¥~}(y) is compactly open in X foreachy € Y
and {z € X : (2) # 0} = {z € X : ¥(z) # O};

(2) (¢z,%z; Nz) is an Lg,c-majorant of ¢ at z if ¢,z : X — 2¥ two mappings and N,
is an open neighborhood of z in X such that (a): for each z € N, ¢(z) C ¢-(z) and
0(z) & cog(2); (b): for each z € X, .(2) C ¢=(z) and copz(z) CY; and (c): for each
y €Y, ¥71(y) is compactly open in X;

(3) ¢ is said to be of Lgc-majorized if for each z € X with ¢(z) # 0, there exists an
Lg,c-majorant (¢5,%=z, Nz) of ¢ at z such that for any non-empty finite subset A of the
set {z € X : ¢(z) # 0}, we have the following equality:

{z € NzealN: : ﬂ,eAcqu,(z) 5& 0} = {z € NzealN: : nzeAco'l’z(z) 56 0}-

It is clear that every correspondence of class Lg,c is Lg,c-majorized. We note that our notions
of the correspondence ¢ being of class Lg,c and Lg,c-majorized correspondence generalize the
concepts of correspondence of classes £} and L£}-majorized introduced by Ding et al (7], which
all in turn generalize the notions of ¢ € C(X,Y,0) and C-majorized correspondence respectively
introduced by Tulcea [27] and Yannelis and Prabhakar [30]. In this paper, we shall deal mainly
with either the case (I) X = Y and is a non-empty convex subset of the topological vector space
E and 6 = Ix, the identity mapping on X, or the case (II) X = MjerX; and § =7 : X — Xj is
the projection of X onto X; and ¥ = Xj is a non-empty convex subset of a topological vector
space. In both cases (I) and (II), we shall write L¢ in place of Lgc.

A measurable space (Q,X) is a pair where 0 is a set and X is a o-algebra of subsets of Q. If
X is a set, A C X, and D is a non-empty family of subsets of X, we shall denote by D N A the
family {DN A : D € D} and by ox(D) the smallest o-algebra on X generated by D. If X is a
topological space with topology Tx, we shall use B(X) to denote ox(7x), the Borel o-algebra
on X if there is no ambiguity on the topology 7x. If (2,X) and (®,I') are two measurable
spaces, then ¥ @ I’ denotes the smallest o-algebra on £ x ® which contains all the sets A x B,
where A€ 8, B€eT,ie. E®T = oaxs (X x T'). We note that the Borel o-algebra B(X; x X3)
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contains B(X;) ® B(X_) in general, but the converse is not necessarily true.

A function f : Q@ — & is said to be (Z,I') measurable if f~1(B) ={z € Q: f(z) e B} € T
for each B € T'. Let X be a topological space and F : (2,E) — 2% a correspondence. Then F
is said to be measurable (resp., weakly measurable) if F~}(B) = {w € 2 : F(w)NB # ¢} € &
for each closed (resp., open) subset B of X. The mapping F is said to have a measurable graph
if Graph F := {(w,y) € 2 x X : y € F(w)} € £ ® B(X). A function f: Q — X is said to be a
measurable selection of F if f is a measurable function provided f(w) € F(w) for all w € Q.

If (2,%), (2,T') are measurable spaces and Y is a topological space, then a mapping F :
2 x ® — 2Y is said to be jointly measurable (resp., jointly weakly measurable) if for every closed
(resp., open) subset B of Y, f~(B) € T ®T. In the case & = X is a topological space, it is
understood that T is the Borel o-algebra B(X). Let u be a positive measure on a measurable
space (2,Z). A subset N of  is called a u-negligible subset of Q if there exists a measurable
subset A € T such that N C A and p(A) = 0. The p-completion of X, denoted by X, is the
o-algebra on Q2 generated by T and the p-negligible subsets of 2. We know that each measure
p admits a unique extension i to X,. The o-algebra X is said to be p-complete if & = X,,.
Also, (2,X) is a complete measurable space if there is a positive measure p on (2, ) such that
T,=3

A topological space X is said to be (i): a Polish space if X is separable and metrizable by
'a complete metric; (ii) a Suslin space if X is a Hausdorff topological space and the continuous
image of a Polish space. A Polish (or Suslin) subset in a topological space is a subset which is a
Polish (or Suslin) space. We note that the concept of ‘Suslin set’ plays very important roles in
the study of measurable selection theory. We also remark that if X; and X, are Suslin spaces,
then B(X; x X3) = B(X;) ® B(X_); for more details, see Saint-Beuve [17, p.113].

DEFINITION 1.5. Denote by 7 and F the sets of infinite and finite sequences of positive

integers respectively. Let G be a family of sets and F : F — G a mapping. For each o =
oo

(0:)2, € J and n € N, we shall denote (01, ,05) by 0/n. Then |J [} F(o/n) is said to be
c€J n=1

obtained from G by the Suslin operation. Now if every set obtained from G in this way is also
in G, then G is called a Suslin family.

Note that if p is an outer measure on a measurable space (Q,X), then X is a Suslin family
(e.g., see Saks [18, p.50]). In particular, if (2,X) is a complete measurable space, then ¥ is a
Suslin family (for more details, see Wagner [32, p.864]). It also implies that the o-algebra X of
Lebesgue measurable subsets of [0,1] is a Suslin family.

DEFINITION 1.6. Let X and Y be topological spaces, (§2,X) 2 measurable space and
F:Qx X — 2Y a set-valued mapping. Then F is said to be
(i) a random operator if for each fixed z € X, the mapping F(-,z) : @ — 2Y is a measurable

mapping;

(ii) lower semicontinuous (resp., upper semicontinuous, continuous) if for each fixed w € 1,
F(w,-): X — 2Y is lower semicontinuous (resp., upper semicontinuous, continuous);

(iii) random upper semicontinuous (resp., random lower semicontinuous, random continu-
ous) if F is both a random operator and upper semicontinuous (resp., lower semicon-
tinuous, continuous) mapping.

Let A C X x Y. Throughout of this paper, we shall denote the projection of A into X
by Projx A which is the set {z € X : there exists some y € Y such that (z,y) € A}; and if
T:QxX — 2Y, the domain of T, denoted by DomT, is the set {(w,z) € A x X : T(w,z) # 0 }.
It is easy to see that DomT = Projaxx GraphT. For the simplicity of our study in this paper,
all topological spaces are assumed to be Hausdorff unless otherwise specified.

In the study of this paper, we shall need the following measurable selection theorem which is
a Corollary of Theorem 7 of Leese in [14]:

THEOREM A. Let (2, X) be a measurable space, £ a Suslin family, X a Suslin space and
F :(Q,Z) — 2% be a mapping such that Graph F € £ ® B(X). Then there exists a sequence
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{7n}, of measurable selections of F such that for each w € Q, the set {yn(w),n =1,2,---}is
dense in F(w).

2. RANDOM MAXIMAL ELEMENTS

Before we prove existence theorems of random maximal elements, we shall need a non-compact
version of the well-known Fan - Browder type fixed point theorem which has been recently estab-
lished by Tan and Yuan [20] as applications of the classical Knaster - Kuratowski - Mazurkiewicz
lemma (in short, KKM lemma which was first given in [13]). For the convenience of our study
in this paper, we state it as

LEMMA 2.1. Let X be a non-empty convex subset of a topological vector space E (not

necessarily Hausdorff) and P,Q : X — 2% be such that

(a) for each z € X, P(z) C Q(=);

(b) for each z € X, P~(z) is compactly open in X;

(c) there exist a non-empty closed and compact subset K of X and zo € X such that

X\ K C (coQ) }(z0);

(d) for each y € K, P(y) #0.

Then there exists an z € X such that z € coQ(z).

PROOF. 1t is a special case of Theorem 2.4" of Tan and Yuan [20]. O

REMARK 2.1. We should like to remark that many generalizations of Fan-Browder type
fixed point theorem have been given by many authors in recent years. For example, by posing
another different non-compact condition on the mapping P instead of mapping coQ in Lemma
2.1, the following non-compact version of Fan-Browder fixed point theorem has been established
recently by Park [16, p.500]. In order to make a comparison with Lemma 2.1 above, we state
here one of another non-compact version of Fan-Browder fixed point theorem which is essentially
due to Park [16].

LEMMA 2.1'. Let X be a non-empty convex subset of a topological vector space E and
P,Q : X — 2% be such that
(a) for each z € X, P(z) C Q(=);
(b) for each z € X, P~(z) is compactly open in X;
(c) there exist a non-empty compact subset K of X such that for each non-empty finite
subset N of X, there exists a non-empty compact and convex subset Ly of X containing
N such that Ly \ K C (coP)'l(LN);
(d) for each y € K, P(y) # 0.
Then there exists an z € X such that z € coQ(z).

PROOF. 1t is a special case of Theorem 5 of Park 16, p.500]. O

It is clear that Lemma 2.1 and Lemma 2.1’ are independent to each other as the ‘non-
compact conditions (d)’ in both Lemmas 2.1 and 2.1’ are different. Secondly, for more other
recent results on the study of Fan-Browder type fixed point theorems and their applications to
nonlinear analysis, convex analysis, mathematical economics, game theory and related topics,
the interested readers can find more details and references from Park [16] and Yuan [31)].

We also need the following selection result which is Lemma 3.1 of Tan and Yuan [20].

LEMMA 2.2. Let X be a regular topological vector space and Y a non-empty subset of a
vector space E. Let #: X — E and P : X — 2" be Lg,c-majorized. If each open subset of X
containing the set B = {z € X : P(z) # 0} is paracompact, then there exists a correspondence
¢ : X — 2Y of class Lg,c such that P(z) C ¢(z) for each z € X.

PROOF. It is Lemma 3.1 of Tan and Yuan (20]. O
Now we have the following theorems concerning the existence of maximal elements.

THEOREM 2.3. Let X be a non-empty convex subset of a topological vector space E and
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Q:X - 2X beofclass L Ix,c- Suppose that there exist a non-empty closed and compact subset
K of X and z¢9 € X such that z¢ € coQ(y) for all y € X \ K.
Then there exists a point z € K such that Q(z) = 0.

PROOF. If the conclusion were false, then for each z € K, Q(z) # 0. Since Q is of class
Lix,c, let P: X — 2% be a correspondence such that (a) for each z € X, P(z) C Q(z), (b) for
each y € X, p~!(y) is compactly open in X and (c) {z € X : p(z) # 0} = {z € X : Q(z) # 0}.
By Lemma 2.1, there exists a point z € X such that z € coQ(z) which contradicts that Q is of
class Ly, ,c. Therefore the conclusion must hold. O

THEOREM 2.4. Let X be a non-empty paracompact convex subset of a topological vector
space and P : X — 2X be Ly, c-majorized. Suppose that there exist a non-empty closed and
compact subset K of X and z¢o € X such that zo € coP(y) forall y € X \ K.

Then there exists a point z € K such that P(z) = 0.

PROOF. Suppose that the conclusion does not hold. Then P(z) # @ for all z € X and
hence the set {z € X : P(z) # 0} = X, which is paracompact. By Lemma 2.2, there exists a
correspondence ¢ : X — 2% of class Ly, ¢ such that for each z € X, P(z) C ¢(z). Note that
there exist a non-empty closed and compact subset K of X and z¢ € X such that z¢ € coP(y) C
cod(y) for all y € X \ K. By Theorem 2.3, there exists a point z € K such that ¢(z) = 0 so
that P(z) = @ which is a contradiction. Therefore there must exist a point z € K such that
'"P(z) = 0, and we complete the proof. O

Theorem 2.3 generalizes Corollary 1 of Borglin and Keiding [3], Theorem 2.2 of Toussaint
[26], Theorem 2 of Tulcea [27] and Corollary 5.1 of Yannelis and Prabhakar [30).

Now we have the following existence theorems of random maximal elements which correspond
to Theorem 2.3 and Theorem 2.4:

THEOREM 2.5. Let (Q,X) be a measurable space with £ a Suslin family and X be a
non-empty convex Polish subset of a topological vector space and Q : @ x X — 2% be of class
L1, c for each fixed w € Q. Suppose that for any given w € , there exist a non-empty closed
and compact subset K (w) of X and zo(w) € X such that zo(w) € coQ(w,y) for all y € X\ K(w),
and DomQ € X ® B(X).

Then there exists a sequence {)»}3; of measurable mappings from Q to X such that for each
n=1,2, Qw,Pn(w)) =0 forall w € Q.

PROOF. Define ¥ : @ — 2X*X by ¥(w) = {(2,2) € X x X : Q(w,z) = 0} for each w € Q.
Note that Q(w,-) satisfies all conditions of Theorem 2.3 for fixed w € Q. Thus ¥(w) # 0 for
each w € Q. Let A := {(z,2) € X x X}. Then A € B(X x X) as A js closed in X x X, and
we have 2 x A € £ ® B(X x X). Note that Graph¥ = ([(2 x X)\ DomQ] x X)N (22 x A)
and Dom@Q € X Q B(X), it follows that Graph¥ € (£ @ B(X)) ® B(X) = T® B(X x X) by the
fact that X is a Suslin subset. Therefore ¥ satisfies all conditions of Theorem A. By Theorem
A, there exists a sequence {4}, }32, of measurable selections of ¥, where ¢!, : @ —» X x X. But
then for each n = 1,2, .-, there exists ¥, : @ — X such that ¥} (w) = (¥n(w),¥n(w)) for all
w € ). Now if A is a closed subset of X, then 4 x A is a closed subset of X x X. Thus for each
n= 1’ 2’ ceey

Pl A)={weR:Yp(w)ed}={we: Y. (w)e(A4xA)}eX

and hence each ¥, is measurable. Moreover, for each i = 1,2, -+, Q(w, ¥ (w)) = @ for all w € Q.
O

By following the similar argument used in the proof of Theorem 2.5 and applying Theorem 2.4
instead of Theorem 2.3, we have the following existence theorem of random maximal elements.

THEOREM 2.6. Let (Q,X) be a measurable space with ¥ a Suslin family and X be a
non-empty convex Polish subset of a topological vector space and Q : 2 x X — 2% be such that
for each fixed w € Q, Q(w,-) is Ly, ,c-majorized for each fixed w € Q. Suppose that for any
given w € (2, there exist a non-empty closed and compact subset K(w) of X and zo(w) € X
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such that zo(w) € coQ(w,y) for all y € X \ K(w) and Dom@Q € X ® B(X). Then there exists a
sequence {1, }22, of measurable mappings from  to X such that such that foreachi = 1,2, -,
Q(w,¥a(w)) = 0 for all w € Q.

3. RANDOM EQUILIBRIA IN TOPOLOGICAL VECTOR SPACES

As an application of Theorem A, we shall first prove the following existence theorem of a
random equilibrium for a one-person random game. Then general existence theorems of random
equilibria for random generalized games (resp., random abstract economies) will be established.

THEOREM 3.1. Let (Q,X) be a measurable space with £ a Suslin family and X a non-
empty convex Polish subset of a topological vector space E. Suppose 4,B,P : 2 x X — 2% are
such that

(i) for each (w,z) € @ x X, A(w,z) is non-empty and co( A(w,z)) C B(w,z);
(ii) for any given w € 2, for each y € X, A;'(y) = {z € X : y € A(w,z)} is compactly
open in X;

(iii) for each fixed w € @, A(w,-) N P(w,") is of class L¢;

(iv) Dom(AN P) € £ ® B(X) and GraphB € £ ® B(X x X);

(v) for any given w € , there exist a non-empty closed and compact subset K(w) of X
and zo(w) € X such that zo(w) € co(A(w,y) N P(w,y)) for all y € X \ K(w).

Then there exists a sequence {),}32, of measurable mappings from Q to X such that for each
n=1,2,---, (¥a(w) € B(w,Pn(w)) and A(w,¥n(w)) N P(w,¥n(w)) =0 for all w € Q.

PROOF. Define ¥ : O — 2X*X by
¥(w) = {(z,z) € X x X : A(w,z) N P(w,z) = 0 and z € B(w,z)}

for each w € 2 x X. Then Theorem 4.1 of Tan and Yuan [20] implies that for each w € {2, there
exists z, € X such that (z,,,2.) € ¥(w). Note that

Graph¥ = {{(Q x X) \ Dom(A N P)] x X} N {GraphB N (2 x A)},

where A = {(z,z) € X x X : z € X}. By our hypotheses, Dom(A N P) € £ ® B(X) and
GraphB € £ ® B(X x X), it follows that

Graph¥ € [£ ® B(X) x B(X)|N[E @ B(X x X)| = £ ® B(X x X)

as X is a Suslin set. Therefore ¥ satisfies all conditions of Theorem' A. By Theorem A, there
exists a sequence {9}, of measurable selections of ¥, where ¥/, :  — X x X. But then for
each n = 1,2, -, there exists ¥, :  — X such that ¥/, (w) = (¥n(w),¥n(w)) for all w € Q.
Now by following the same approach used in the proof in the Theorem 2.5, we have that each
%n is measurable; and moreover, for each ¢ = 1,2,:--, A(w,¥n(w)) N P(w,¥n(w)) = 0 and
Yn(w) € B(¥n(w)) forall w e Q. O

Before we deduce the random equilibrium existence theorem for a non-compact random gen-
eralized game (resp., random abstract economy) with a countable number of players (resp.,
agents). We recall the following result.

LEMMA 3.2. Let T' = (X;; 4;, B;; P:)ic1 be a generalized game such that X = ;e X; is
paracompact. Suppose that the following conditions are satisfied for each z € I:
(i) X; is a non-empty convex subset of a topological vector space F;;
(ii) for each z € X, A;i(z) is non-empty, cod;(z) C Bi(z);
(iii) for each y € X;, A7 '(y) is compactly open in X;
(iv) A;N P; is Lc-majorized;
(v) the set E; = {z € X : Ai(z) N Pi(z) # 0} is open in X;
(vi) there exist a non-empty closed and compact subset K of X and z° = (z?);er € X such
that z? € co(Ai(y) N Pi(y)) forally € X \ K.
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Then I' has an equilibrium in K.

PROOF. This is a special case of Theorem 4.3 of Tarafdar and Yuan [25] (and see also
Theorem 5.3 of Ding and Tarafdar [8]). O

Now we have the following:

THEOREM 3.3. Let (1,Z) be a measurable space with ¥ a Suslin family and T' =
(9; Xi; Ai, B;; Pi)icr be a random generalized game such that I is countable and the follow-
ing conditions are satisfied for each i € I:

(i) X; is a non-empty convex Polish subset of a topological vector space F;;

(ii) for each (w,z) € 0 x X, A;(w,z) is non-empty, cod;(w,z) C Bi(w,z);

(iii) for any given w € , for each y € Xj, A;'l‘-(y) ={z € X : y € Ai(w,z)} is compactly
open in X;

(iv) Ai(w,-)NPi(w,-)is Lo-majorized for each fixed w € 2 and Dom(A4;NP;), and GraphB €
£ ®B(X x X), where the mapping B : @ x X — 2% defined by B(w,z) = ;1 Bi(w,z)
for each (w,z) € 2 x X.

(v) the set E(w) = {z € X : Aij(w,z) N Pi(w,z) # 0} is open in X for each w € Q;

(vi) for any given w € 2, there exist a non-empty closed and compact subset K(w) of X and
z%(w) = (2?(w))ier € X such that z?(w) € co(A4i(w,y) N Pi(w,y)) for all y € X \ K(w).

Then T' has a sequence {yn}32; of measurable mappings from {2 to X such that for each
n=1,2,---, 7i(¢n(w)) € Bi(w,¥n(w)) and Ai(w,¥n(w)) N Pi(w,Pn(w)) = @ for all w € Q and
alli el

PROOF. For each i € I, define ¥; : @ — 2X*X by ¥,(w) = {(z,z) € X x X : Ai(w,z) N
Pi(w,z) = 0 and z; € B;(w,z)} and ¥ : Q — 2X*X by ¥(w) = N¥L, (w) for each w € Q.
Then ¥(w) # @ for each fixed w € © by our hypotheses of (i)-(v) and Lemma 3.2. Let A =
{(z,z) € X x X : z € X}. Then Graph¥ = N;e1Graph¥ = [(Q x X \ [UierDom(4; N F;)]) x
X]N[GraphB N (2 x A)]. Note that GraphB € £ ® B(X x X) and Dom(4; N P;) € T ® B(X)
for each i € I, so that U;er(Dom(A4; N P;)) € £ ® B(X) since I is countable. Therefore
Graph¥ € £ Q@ B(X x X). Hence ¥ satisfies all conditions of Theorem A. By Theorem A, there
exists a sequence {,,}32; of measurable selections of ¥, where 4, : @ —» X x X. But then for
each n = 1,2,---, there exists ¥, : @ — X such that ¥}, (w) = (¥n(w),¥n(w)) for all w € Q.
Now by the same proof in Theorem 2.5, it is clear that each v, is measurable. Moreover, for
each n =1,2, -, Ai(w,¥n(w)) N Pi(w,¥n(w)) = 0 and m;(¥n(w)) € Bi(w,¥n(w)) for all w € Q
andiel. O

REMARK 3.1. In Theorem 3.3, if GraphB; € £ ® B(X x X;) for each i € I, then the
mapping B : @ x X — 2% defined by B(w,z) = ;e Bi(w, ) for each i € I has a measurable
graph, i.e., GraphB € T ® B(X x X;). We would also like to address that Theorem 3.3 is a
stochastic version of Theorem 4.3 of Tarafdar and Yuan [25] which, in turn includes Theorem
5.3 of Ding and Tarafdar [8] as a special case when the set I of players is countable.

As an immediate consequence of Theorem 3.3, we have the following existence result.

COROLLARY 3.4. Let (,X) be a measurable space with ¥ a Suslin family. T' =
(2; X;; Ai, Bi; Pi)ier be a random generalized game such that X = I;¢rX; is paracompact.
Suppose that I is countable and the following conditions are satisfied for each i € I:

(i) X; is a non-empty convex Polish subset of a topological vector space Fj;

(ii) for each (w,z) € @ x X, (Ai(w,z) is non-empty and codi(w,z) C Bi(w,z); and
Dom(A; N P;) and GraphB; € T ® B(X x X;);

(iii) for any given w € 2, each y € X;, AJ(y) = {z € X : y € 4i(w,2)} and Pliw)={z¢
X :y € Pi(w,z)} are open in X;

(iv) for any given w € R, for each z € X, z; ¢ coPj(w,z);

(v) for any given w € (, there exist a non-empty closed and compact subset K(w) of X and
z°%(w) = (22(w))ier € X such that z?(w) € co(Ai(w,y) N Pi(w,y)) for all y € X \ K(w).
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Then T has a sequence of random equilibrium {¥n}32; from Q to X such that for all i € I,
7i(¥n(w)) € Bi(w,¥a(w)) and A;(w,¥n(w)) N Pi(w,¥n(w)) = 0 for all w € Q.

PROOF. Note that for each fixed w € §, the set {z € X : Ai(w,z) N Py(w,z) # 0} =
Uyex: (A %(y)N P} (y)) which is open by (iii). Thus all hypotheses of Theorem 3.3 are satisfied.
By Theorem 3.3, the conclusion follows. O

Corollary 3.4 is also stochastic version of Corollary 4.4 of Tan an Yuan [20] which in turn
generalizes Theorem 2.5 of Toussaint [26], Corollary 2 of Tulcea [27] (also Corollary 2 in [28])
and and Theorem 6.1 of Yannelis and Prabhakar [30] to non-compact generalized games with I
is countable.

4. RANDOM EQUILIBRIA IN LOCALLY CONVEX SPACES

Finally, by the same argument as employed in Theorem 3.3 and the existence theorem of
equilibria of generalized games in locally convex topological spaces (i.e., Theorem 5.4 of Tarafdar
and Yuan [25] (see also Theorem 5.6 of Ding and Tarafdar [8]), we have the following random
equilibrium existence theorem for a random generalized game (resp., random abstract economy)
with countable number of players (resp., agents) in locally convex topological vector space.

THEOREM 4.1. Let (Q,X) be a measurable space with ¥ a Suslin family and T' =
(Q; Xi; Ai, Bi; P;)ier a random generalized game such that I is countable and the following
conditions are satisfied for each i € I:

(i) X is a non-empty convex Polish subset of a locally convex vector space Fj;

(ii) for each w € 2, 4;(w,-) : X — 2% is lower semicontinuous and for each (w,z) € @ x X,
Ai(w,z) is non-empty and cod;(w,z) C Bi(w,z); and Dom(A4; N P;) and GraphB; €
T ® B(X x X;);

(iii) for each w € Q, Ai(w,-) N Py(w,-) is Lc-majorized;

(iv) for each given w € f1, the set E;(w) = {z € X : Ai(w,z) N Pi(w,z) # 0} is open in X;

(v) for any given w € 2, there exist a non-empty closed and compact subset K(w) of X and
z%(w) = (z?(w))ier € X such that z)(w) € co(4i(w,y) N Pi(w,y)) for all y € X \ K(w).

Then T has a sequence {yn}32; of measurable mappings from Q to X such that for each
n=12, ., m(¥n(w)) € Bi(w,Pn(w)) and Ai(w,¥n(w)) N Pi(w,¥n(w)) = 0 for all w € Q and
foralliel.

PROOF. For each i € I, define ¥; : @ — 2X*X by ¥;(w) = {(z,2z) € X x X : Ai(w,z) N
Pi(w,z) = 0 and z; € Bi(w,2)} and ¥ : Q — 2X*X by ¥(w) = "L (w) for each w € Q. Then
¥(w) # 0 for each fixed w € Q2 by our assumptions (1)-(v) and Theorem 5.4 of Tarafdar and
Yuan [25] (see also Theorem 5.6 of Ding and Tarafdar [8]). Let A = {(z,z) € X x X : z € X}.
Define a mapping B : Q x X — 2% by B(w,z) = ;¢ Bi(w,z) for each (w,z) € @ x X. Since
for each i € I, GraphB; € X ® B(X x X;), then it is easily to see that GraphB € £ ® B(X x X).
Note that Graph¥ = N;e1Graph¥ = [(Q x X \ [UierDom(4; N P;)]) x X] N [GraphB N (Q x A)]
and GraphB € £ ® B(X x X), since Dom(4; N P;) € £ ® B(X) for each i € I and I is
countable, Uicr(Dom(4; N P;)) € T ® B(X). Therefore Graph¥ € T @ B(X x X). Hence
¥ satisfies all conditions of Theorem A. By Theorem A, there exists a sequence {$,}32; of
measurable selections of ¥, where ¥, : @ — X x X. But then for each n = 1,2,---, there
exists ¥n : @ — X such that ¥} (w) = (¥n(w),¥n(w)) for all w € 2. Now following the same
proof in Theorem 2.5, it is clear that each 1, is measurable. Moreover, for each n = 1,2,---,
Ai(w, ¥a(w)) N Pi(w,Pn(w)) = 0 and mi(Pa(w)) € Bi(w,Yn(w)) forallw € Qand foralli € I. O

Theorem 4.1 is also a stochastic version of Theorem 5.4 of Tarafdar and Yuan [25] (which in
turn, generalizes Theorem 5.6 of Ding and Tarafdar [8], Corollary 3 of Borglin and Keiding (3,
p-315], Theorem 4.1 of Chang [4, p.247] and Theorem of Shafer and Sonnenschein [19, p.374]
with countable number of players (resp., agents). For other kinds of existence theorems of
random equilibria for random generalized games, we refer the interested readers to Tan and
Yuan [21] and Yannelis and Rustichini [29)].
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