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ABSTRACT. In this paper, the concepts of random maximal elements, random equilibria
and random generalized games are described. Secondly by measurable selection theorem, some
existence theorems of random maximal elements for Lc-majorized correspondences are obtained.
Then we prove existence theorems of random equilibria for non-compact one-person random
games. Finally, a random equilibrium existence theorem for non-compact random generalized
games (reap., random abstract economics) in topological vector spaces and a random equilibrium
existence theorem of non-compact random games in locally convex topological vector spaces
in which the constraint mappings are lower semicontinuous with countable number of players
(reap., agents) are given. Our results are stochastic versions of corresponding results in the
recent literatures.
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1. INTRODUCTION

In the recent years, the classical Arrow-Debreu result [I] on the existence of Walrasian equilib-
rium has been generalized in many directions. Mas-Colell [15] has first shown that the existence
of an equilibrium can be established without assuming preferences to be total or transitive.
Next by using a maximal existence theorem, Gale and Mas-Colell [9] gave a proof of the ex-
istence of a competitive equilibrium without ordered preferences. By using Kakutain’s fixed
point theorem, Shaer and Sonnenschein [19] proved the powerful result on the ’Arrow-Debreu
Lemma’ for abstract economy in which preferences may not be total or transitive but have an

open graph. At the same time, Borglin and Keiding [3] proved a new existence theorem for
a compact abstract economy with KF-majorized preference correspondences. Following their
ideas, there have been a number of generalizations of the existence of equilibria for compact
abstract economies. For example, Ding et al [7], Tan and Yuan [20], Tan and Yuan [22-23],
Tarafdar and Yuan [25], Toussaint [26], Tulcea [27-28] proved some very general equilibrium
existence theorems for generalized games (abstract economies) with correspondences defined on
a compact (reap., non-compact)strategy (choice) set of players (agents). These theorems gen-
eralized most known equilibrium theorems on compact generalized games due to Borslin and
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Keiding [3], Shaer and Sonnenschein [19] and Yannelis and Prabhakar [30]. Unfortunately, all
these results mentioned above axe deterministic in nature, i.e., the equilibrium does not involve
any random variable fxom measurable spces.

On the other hand, Debreu discussed the uncertainty o behavior of an economic ctivity
in the Chapter 7 of his book [5]. Since then, a series o papers concerning the uncertainty
behavior o economic actions have been published. For example, Mldenbrand [11] considered
economy in which the preferences axe random correspondence. Bewley [2] studied the existence
equilibrium in abstract economy with a measure space of gents and with am infinite-dimensional
strategy space. Kim et al [12] also proved the existence of equilibria in abstract economy with
measure space of gents and with an inllnite-dimensionM strategy spce by random fixed point
theorems. In particular, Tan and Yuan [21] and Yannelis and Rustichini [29] also gave some
existence theorems o random equilibria or random genera/ized games or random qualitative
games recently under the various conditions.

In this paper we shMl consider the following problem. The strateg3, set X o the {th players
(reap., agents) is a nonempty subset o topological vector spaces, but the constraint and pref-
erences o players (reap., gents) in genera]ized games (reap., abstract economics) axe involved
in the variable o a measurable space (rt, Z). Therefore, the equilibrium o genera1ed games
which involves in a measurable spce (f, I]) should be a function o random variable in the
measurable spce (f, ]). More precisely, in mathematical language it is ormulated as ollowing:
Let I be (possibly inRnite) set of agents and (f/, I]) measurable space. For each I, let its
strategy (reap., choice) set X be a non-empty subset o a topological vector spce, IIe.rX
the product spce of {}ez and P f/ X --+ 2x a (set-valued) correspondence. Following
the notion o Ga/e and Mas-Colell [10] in deterministic case, we hve the following definition.

DEFINITION 1.1. The collection r (rt,,P)e is said to be a mnom
game. A measurable single-valued mapping fl X is said to be a random equilibrium of
the random qualitative gaane F if

P,(,())

for all I and all w f.

DEPINITION 1.2. A rndom generalized game (reap., rndom tbtmct econornl) is the
family of collection r (f,Xi;A,Bi;Pi)i where I is a (finite or infinite) set of players
(reap., agents) such that for each I, Xi is a non-empty subset of a topological vector
space and Ai,B f x X HeX 2x’ are (set-valued) constraint correspondences and
Pi f X --, 2x’ is a set-valued preference correspondence (which are interpreted as for each
player (or agent) I, the associated constraint and preference correspondences Ai, Bi and
Pi have stochastic actions). If the set I of players (resp., agents) is finite, i.e., I {1,.--,
where n N is a fixed positive integer, then r (fl; xi; A,Bi; P)i is also called an N-person
random game.

DEPINITION 1.. An random equilibrium of a random generalized game r is a measurable
mapping f X such that for each G I,

,,(,(,,)) B-;-(,,,(,,,)) d ,(,,, ,(,,)) c P(,,,,,(,,,))

for all w G f, where ri is the projection of X onto Xi.

We would like to remark that if Ai, Bi and Pi of random generMized game P (f; Ai, B;
are independent of variable w E f, i.e., Ai(w,.) A(.), B(w,.) Bi(.) and P(w,.) P(.),
when Bi() clxiBi() (which is the case when B has a closed graph in X Xi; in partic-
ular, when clB is upper semicontinuous with closed velues), our definition of an equilibrium
point coincides with that of Ding et al [7] in deterministic case; and if in addition, A B for
each E I, our definition of an equilibrium point coincides with the standard definition in the
deterministic case; e.g., see Borglin and Keiding [3], Tulces [27] and Yannelis and Prabhakar
[so].
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This paper is organized as follows. The concepts of random maximal elements, random equi-
libria and random generalized games are described. Next by a measurable selection theorem
due to Leese [14], a existence theorem of random maximal elements for Lc-majorized correspon-
dences is obtained. Then we prove existence a theorem of random equilibria for non-compact
random one-person games. Finally, a random equilibrium existence theorem for non-compact
random generalized games in topological vector spaces and a random equilibrium existence
theorem of random generalized games (resp., random abstract economics) in locally convex
topological vector spaces in which the constraint mappings are lower semicontinuous and with
countable number of players (resp., agents) are given. Our results are the stochastic versions of
corresponding results in the literatures.

We now turn to explain some notions. The set of all real numbers is denoted by R. Let A
be a subset of a topological space X. We shall denote by 2.4 the family of all subsets of A,
intx(A) the interior of A in X and clx(A) the closure of A in X. A subset S of X is said to be
compactly open in X if S is relatively compact in each non-empty compact subset C of X. If S
is a subset of a vector space E, we shall denote by coC the convex hull of C in E. If A is a non-
empty subset of a topological vector space E and S, T A ---, 2E are correspondences, then coT,
Tf3S" A --, 2E are correspondences defined by (coT)(z) coT(z) and (Tf S)(z) T(z) f3 S(z)
for each z 6 A, respectively. If X and Y axe topological spaces and (f,E) is a measurable
space, and T f X 2Y is a correspondence, the Graph of T denoted by GraphT, is the
set {(w,z,y) f X Y’y T(w,z)} and the correspondence " f X --, 2Y is defined
by T(w,z) {F G Y (z,y) clxyGraph.T(w,.)}. For each fixed w f, the graph of the
mapping T(a,.) X ---, 2Y is defined by Graph(T(w,.) {(z,y) X Y’y T(w,z)), and
the mapping cIT" f X --, 2Y is defined by cIT(w,z) cly(T(w,z)) for each (w,z) f X.
It is easy to see that cIT(w, z) C T(w, z) for each (w,z) G t2 X.

DEFINITION 1.4. Let X be a topological space, Y a non-empty subset of a vector space
E, 0 X --, E a mapping and b X --, 2Y a correspondence. Then

(1) b is said to be of class Ls,c (e.g., see Tan and Yuan [20]) if (a): for each z G X,
cobCz) C Y and O(z) f co#(z) and (b): there exists a correspondence @: X --, 2y such
that for each z 6 X, bCz) C bCz), and -ICF is compactly ope in X for each F 6 r

(2) (b.,.; N.) is an Ls,c-mjornt of b at z if b.,. X -, 2Y two mappings and N(R)

S(z) o,(z); (b): orh e x, ,() c 4,() d ,(z) c Y; d (): ore
6 Y, jl(y) is compactly open X;

Ls,c-majort (4.,., N.) of 4 at z su that for y non-empty fite subt A of the
set {z 6 X: (.) # }, we have the fonog equity:

It ise that eve coespondence f8s Ls, is Ls,-majoed. We note that our notions
of the coespondence bng of 8s Ls, d Ls,-majoed coespondence genere the
concepts of correspondence of ses L; d ;-msjozed troduced byD et [7],w
tgenere the notions of G C(X, Y, 0) d C-majored coespondence rpectively

troduced by cea [27] and YnsdPrsbh [30]. ts paper, we sh demy
th ther the ce (I) X Y d is s non-empty conv subset of the topoloc vector space
E d Ix, the identity mappg on X, or the ce (II) X HiXi d 0 = X X is
the projection of X onto X$ d Y X$ is a non-empty convex subset of a topoloc vector
spe. In both ces (I) d (II), we sh te L place of Ls,.
A measurable space (f,E) is a pair where f is a set and E is a r-algebra of subsets of f. If

X is a set, A C X, and :D is a non-empty family of subsets of X, we shall denote by/P N A the
family {D N A D G 9} and by rx(:D) the smallest r-algebra on X generated by/P. If X is a

topological space with topology ’x, we shall use E(X) to denote rx(’x), the Borel or-algebra
on X if there is no ambiguity on the topology ’x. If (f,E) and (,I’) are two measurable
spaces, then E (R) F denotes the smallest or-algebra on f I, which contains all the sets A
where A E, B G F, i.e. E (R) F r(E F). We note that the Bore] or-algebra/3(X1



794 E. TARAFDAR AND X.-Z. YUAN

contains/(X1) (R)/(X2) in genera-i, but the converse is not necessarily true.

A function J: f --, is said to be (,P) meumbl if f-I(B) {z E f: f(z) E/3} E
for each B 1". Let X be a topological space and F (F,) --, 2x a correspondence. Then F
is said to be mesurab/e (reap., wea.ly mesurable) if F-I(B) {w f: F(w); B E
for each closed (resp., open) subset B of X. The mapping F is said to hare a mesurable graph
if Graph F :- {(to,y) E G X: y F(to) E (R) B(X). A function f: f X is said to be a
meurable selection of F if f is a measurable function provided j(to) F(w) for all to F.

If (f,), (,r) are measurable spaces and r is a topological space, then a mapping F
l’ x 2Y is said to be jointly measurable (reap., jointly wealdy measurable) if for every closed
(resp., open) subset B of Y, f-(B) E ] (R) 1". In the case X is a topologica space, it is
understood that 1" is the Borel c-algebra/3(X). Let/ be a positive measure on a measurable
space (f, Y.). A subset N of f is called a p-negligible subset of f if there exists a measurable
subset A such that N C A and p(A) O. The p-completion of , denoted by ,, is the
c-algebra on f generated by Y. and the p-negligible subsets of F. We know that each measure
p admits a unique extension/i to . The c-algebra is said to be p-complete if .
Also, (f, ) is a complete mesurable space if there is a positive measure p on (F, .) such that

A topological space X is said to be (i): a Polish space if X is separable and metrizable by
’a complete metric; (ii) a Suslin space if X is a Hausdorff topological space and the continuous
image of a Polish space. A Polish (or Suslin) subset in a topological space is a subset which is a
Polish (or Suslin) space. We note that the concept of ’Suslin set’ plays very important roles in
the study of measurable selection theory. We also remark that if X and X2 are Suslin spaces,
then B(X X) 3(X) (R) B(X); for more details, see Saint-Beuve [17, p.113].

DEFINITION 1.5. Denote by ,7" and " the sets of infinite and finite sequences of positive
integers respectively. Let be a family of sets and F " a mapping. For each

()=1 ,7" and n N, we shall denote (r, ,,) by /n. Then U F(/n) is said to be
’E." n----1

obtained from by the Slin operation. Now if every set obtained from in this way is also
in , then is called a Sulin .family.

Note that if p is an outer measure on a measurable space (F/, E), then E is a Suslin family
(e.g., see Saks [18, p.50]). In particular, if (F/,E) is a complete measurable space, then E is a

Suslin family (for more details, see Wagner [32, p.864]). It also implies that the c-algebra E of
Lebesgue measurable subsets of [0,1] is a Suslin family.

DEFINITION 1.6. Let X and Y be topological spaces, (f,E),a measurable space and
F F X --, 2Y a set-valued mapping. Then F is said to be

(i) a random operator if for each fixed z E X, the mapping F(., z) F -- 2Y is a measurable
mapping;

(ii) lower semicontinuous (resp., upper semicontinuos, continuo) if for each fixed to

F(to, .) :X -- 2z is lower semicontinuous (reap., upper semicontinuous, continuous);

ou) if F is both a random operator and upper semicontinuous (reap., lower semicon-
tinuous, continuous) mapping.

Let A C X Y. Throughout of this paper, we shal denote the projection of A into X
by P’ojxA which is the set z E X there exists some y Y such that (z,y) G A); and if
T: X --, 2Y, the domain of T, denoted by DomY, is the set (w,z) f X: T(w,z)
It is easy to see that DomT P’ojxGraphT. For the simplicity of our study in this paper,
all topological spaces are assumed to be Hausdorff unless otherwise specified.

In the study of this paper, we shall need the following measurable selection theorem which is
a Corollary of Theorem ? of Leese in [14]:
THEOREM A. Let (fl, E) be a measurable space, E a Suslin family, X a Suslin space and

F (, E) - 2x be a mapping such that Graph F E (R)/3(X). Then there exists a sequence
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{7,}’= of measurable selections of F such that for each w 6 n, the set {7,(w), n I, 2,..-} is
dense in F(a,).

2. PNDOM MAXIMAL ELEMENTS

Before we prove existence theorems of random maximal elements, we shall need a non-compact
version of the well-known Fan- Browder type fixed point theorem which has been recently estab-
lished by Tan and Yuan [20] as applications of the classical Knaster- Kuratows]d Mazurkiewicz
lemma (in short, KKM lemma which was first given in [13]). For the convenience of our study
in this paper, we state it as

LEMMA 2.1. Let X be a non-empty convex subset of a topological vector space E (not
necessarily Hausdorff) and P, Q :X 2x be such that

C) o h, X,
(b) for each z 6 X, p-l(,) $ compactly open in X;
(c) there exist a non-empty closed and compact subset K of X and z0 6 X such that

(d) fo e K, P()
Then there exists an z 6 X such that z 6 coQ(z).

PROOF. It is a special case of Theorem 2.4" of Tan and Yuan [20].

REMARK 2.1. We should like to remark that many generalizations of Fan-Browder type
fixed point theorem have been iven by many authors in recent years. For example, by posing
another different non-compact condition on the mappin P instead of mapping co( in Lemma
2.1, the following non-compact version of Fan-Browder fixed point theorem has been established
recently by Park [16, p.500]. In order to make a comparison with Lemma 2.1 above, we state
here one of another non-compact version of Fan-Browder fixed point theorem which is essentially
due to Park [16].

LEMMA 2.1’. Let X be a non-empty convex subset of a topological vector space E and
P, Q :X 2x be such that

() foh = e X,
(b) for each z 6 X, P-(z) is compactly open in X;
(c) there exist a non-empty compact subset K of X such that for each non-empty finite

subset N of X, there exists a non-empty compact and convex subset LN of X containing
N such that

Then there exists an z 6 X such that z 6 coQ(z).

PROOF.-It is a special case of Theorem 5 of Park [16, p.500]. [3

It is clear that Lemma 2.1 and Lemma 2.1’ are independent to each other as the ’non-
compact conditions (d)’ in both Lemmas 2.1 and 2.1’ aredifferent. Secondly, for more other
recent results on the study of Fan-Browder type fixed point theorems and their applications to
nonlineax analysis, convex analysis, mathematical economics, game theory and related topics,
the interested readers can find more details and references fom Paxk [16] and Yuan [31].

We also need the following selection result which is Lemma 3.1 of Tan and Yuam [20].

LEMMA 2.2. Let X be a regular topological vector space and Y a non-empty subset of a
vector space E. Let 8 X -- E and P X 21" be La,c-majorized. If each open subset of X
containing the set B {z 6 X P(z) @} is paracompact, the-, there exists a correspondence
b:X --, 2Y of class La,c such that P(z) C (z) for each z 6 X.

PROOF. It is Lemma 3.1 of Tan and Yuan [20].

Now we have the following theorems concerning the existence of maximal elements.

THEOREM 2.3. Let X be a non-empty convex subset of a topological vector space E and
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Q X 2x be of class Lx,c. Suppose that there exist a non-empty closed and compact subset
K of X and z0 E X such that z0 E co(st) for all St X \ K.
Then there exists a point z K such that Q(z) ).

PROOF. If the conclusion were false, then for each z K, ((z) ). Since Q is of class
Lfx,c, let P: X - 2x be a correspondence such that (a) for each z X, P(z) C ((z), (b) for
each y E X, 10-1(y) is compactly open in X and (c) {z X: 10(z) )} {z
By Lemma 2.1, there exists a point z X such that z coQ(z) which contradicts that Q is of
class LIx,C. Therefore the conclusion must hold. O

THEOREM 2.4. Let X be a non-empty paracompact convex subset of a topological vector
space and P X 2x be Llx,c-majorized. Suppose that there exist a non-empty closed and
compact subset K of X and z0 E X such that z0 coP(st) for all y X \ K.
Then there exists a point z K such that P(z) ).

PROOF. Suppose that the conclusion does not hold. Then P(z) for all z X and
hence the set {z X: P(z) } X, which is paracompact. By Lemma 2.2, there exists a

correspondence X -- 2x of class Ll,C such that for each z X, P(z) C (z). Note that
there exist a non-empty closed and compact subset K of X and z0 X such that z0
co(y) for all St X \ K. By Theorem 2.3, there exists a point z E K such that (z) ) so
that P(z) ) which is a contradiction. Therefore there must exist a point z K such that
’P(z) ), and we complete the proof. :]

Theorem 2.3 generalizes Corollary 1 of Borglin and Keiding [3], Theorem 2.2 of Toussaint
[26], Theorem 2 of Tulcea [27] and Corollary 5.1 of Yannelis and Prabhak [30].
Now we have the following existence theorems of random maximal elements which correspond

to Theorem 2.3 and Theorem 2.4:

THEOREM 2.5. Let (f,E) be a measurable space with E a Suslin family and X be a
non-empty convex Polish subset of a topological vector space and Q x X -- 2x be of class
LI,,c for each fixed w . Suppose that for any given w G, there exist a non-empty closed
and compact subset/t’(w) of X and z0(w) X such that z0(w) E coQ,(w, St) for all St
and DomQ E (R)
Then there exists a sequence {,,__i of measurable mappings rom to X such that for each
n 1,2,.-., Q(w,(o)) ) for all o G.

PROOF. Define : --, 2xxx by (w) {(z,z) X X: (w,z) )} for each
Note that Q(o, .) satisfies all conditions of Theorem 2.3 for fixed w f. Thus (w) ) for
each w G. Let A := {(z,z) X X}. Then A B(X x X) as A js closed in X X, and

fact that X is a Suslin subset. Therefore satisfies all conditions of Theorem A. By Theorem
A, there exists a sequence {,},=i of measurable selections of , where -+ X x X. But
then for each n 1,2,..-, there exists ,: G -- X such that (o) ((o),(w)) for all
w E f. Now if A is a closed subset of X, then A A is a closed subset of X X. Thus for each-- 1,2,-.-,

+=*(A) { s a +() A} { s +’() CA A)}

and hence each b, is measurable. Moreover, for each 1,2,-.-, Q(w, @,()) ) for all w

By following the simil_r argument used in the proof of Theorem 2.5 and applying Theorem 2.4
instead of Theorem 2.3, we have the following existence theorem of random maximal elements.

THEOREM 2.6. Let (G,E) be a measurable space with E a Suslin family and X be a

non-empty convex Polish subset of a topological vector space and Q X --, 2x be such that
for each fixed w fl, ((to, .) is Lix,-majorized for each fixed w . Suppose that for any
given w C fl, there exist a non-empty closed and compact subset K(to) of X and z0(w) E X



EQUILIBRIUM POINTS OF RANDOM GENERALIZED GAMES 797

such that z0(w) 6 coQCw, y) for all y 6 X \ K(w) and DomQ 6 Z (R) B(X). Then there exists a
sequence {,}=I of meurable mappingsomG to X su that such that for ea 1,2,. ,
Q(,()) o e n.

3. RANDOM EQUILIBR/A IN TOPOLOGICAL VECTOR SPACES

As an application of Theorem A, we shall first prove the following existence theorem of a
random equilibrium for a one-person random game. Then general existence theorems of random
equilibria for random generalized games (resp., random abstract economies) will be established.

THEOREM 3.1. Let (f,E) be a measurable space with )3 a Suslin family and X a non-
empty convex Polish subset of a topological vector space E. Suppose A, B, P f x X --, 2x are
such that

(i) for each (w,z) 6 x X, A(o;,z) is non-empty and co{A(w,z)) C B(w,z);
(ii) for any given w 6 n, for each y 6 X, A=*(y) {z 6 X’y 6 A(w,z)} is compactly

open in X;
(iii) for each fixed
(iv) Dom(A N P) 6 )3 (R) B(X) and GraphB 6 )3 (R) B(X x X);
(,,) or y i,,,, , e n, th, ,:it -on--,pty ao,d nd CompaCt ,ub,t K(,,,) o X

and z0(w) 6 X such that z0(w) 6 co(A(w,y) N P(w,y)) for all y 6 X \ K(w).
Then there exists a sequence {,},__ of measurable mappings from to X such that for each
n 1,2,..., (,(w) B(o,,(w)) and

PROOF. Define " fl 2xxx by

() {(.,.) e x x. A(,.) (,.) 0 nd

for each w 6 fl x X. Then Theorem 4.1 of Tan and Yuan [20] implies that for each w 6 fl, there
exists z G X such that (z,,z) (w). Note that

Oraphq {[(f x X) \ Dom(A P)] x X} {OraphB ; (f x A)},

where A {(z,z) 6 X xX z 6 X}. By our hypotheses, Dom(ANP) 6 E(R)B(X) and
G’aphB 6 )3 (R) B(X x X), it follows that

G,aphq! 6 [)3 (R) B(X) x BCX)] 6 [E (R) BCX x X)] )3 (R) B(X x X)

as X is a Suslin set. Therefore satisfies all conditions of Theorem’ A. By Theorem A, there
exists a sequence {,},=1 of measurable selections of , where" f --. X X. But then for
each n 1,2,---, there exists , G X such that b:(w) (,(w),,,(w)) for all w 6 fl.
Now by following the same approach used in the proof in the Theorem 2.5, we have that each

is m.rb]; na moo,r, o ,2,.-., A(,()) P(,()) e d
() V(()) or U .

Before we deduce the random equilibrium existence theorem for a non-compact random gen-
eralized game (resp., random abstract economy) with a countable number of players (resp.,
agents). We recall the following result.

LEMMA 3.2. Let F (X; A,B; P), be a generalized game such that X H,Xi is
paracompact. Suppose that the following conditions are satisfied for each I:

(i) Xi is a non-empty convex subset of a topological vector space F;
(ii) for each z E X, Ai(z) is non-empty, coAi(z) C
Off) for each y E X, A-1 (y) is compactly open in X;
(iv) A CI P is Lc-majorized;
(v) the set E {z G X: A(z) P(z) - @} is open in X;
(vi) there exist a non-empty closed and compact subset K of X and z (z)ix 6 X such

that z 6 co(A(y) P(y)) for all y 6 X \ K.
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Then r has an equilibrium in K.

PROOF. This is a special case of Theorem 4.3 of Tarafdar and Yuan [25] (and see also
Theorem 5.3 of Ding and Tarafdar [8]). O

Now we have the following:

THEOREM 3.3. Let (f,) be a measurable space with a Susl family and P
(f;Xi;Ai,Bi;Pi)I be a random generalized game such that I is countable and the follow-
ing conditions are satisfied for each E I:

(i) Xi is a non-empty convex Polish subset of a topological vector space Fi;
(ii) for each (w,z) fl X, A(w,z) is non-empty, coA(w,z) C

(fii) for any given to f, for each y Xi, -1A,i(y) {z X’F Ai(to, z)} is compactly
open in X;

(iv) Ai(to, .)NPi(to, .)is Lc-majorized for each fixed to E fl and Dom(AifPi), and GraphB
E (R) B(X X), where the mapping B" f X --, 2x defined by
for each (to,z) f X.

(v) the set Ei(w) {z X" Ai(to, z) f Pi(to, z) } is open in X for each to f;
(vi) for any given to E f, there exist a non-empty closed and compact subset K(to) of X and

o() o(A(,) (,)) o x \ K().z(w) (z(to))z X such that z

Then F has a sequence (n)n Of measurable mappings from f to X such that for each
n 1,2,.--, r(,(to)) B(to,p,(to)) and A(w,,(w)) P(w,(w)) for w fl d

PROOF. For ea G I, dee fl 2xxx by (w)
P(w,z) d z B(w,z)} d fl 2xxx by (w) (w) for ea
Then (w) for ea ed w fl by o hypotheses of (i)-(v) da3.2. Let
{(,) 6 X x X" 6 X}. Then G,aph dG,ah [Ca x X [VdD(Ad Pd)]) x
x] [.a Ca x a)]. Not. h. .a Z @ aCX x X) dD( ) Z @ aCX)
for e 6 I, o that Ud(D(Ad Pd)) @ B(X) hce I i countable. Therefore
Graph 6 @ B(X x X). ence tisfie contioa of Threm A. By Threm A, here
t a equence {@}= of meurble dections o , where @" X x X. But then or.. ,2,..., . a x ,. th () (.(),.()) o
Now by the se proof h Threm 2.5, it is de that e @ is meable. Morver, for.. ,2,..., (,.()) (,.()) d (.())
dd 6 I.

MA 3.1. Threm 3.3, if GaphB @ B(X x Xd) for e 6 I, then the
mapph " x X 2x ded by (,) de(,) for 6 I h meurble
ph, i.e., Gaph @ B(X x Xd). We wod oe to ddre that Threm 3.3
totc eron of Threm 4.3 of TdddYu [25] w, ht includes Threm
5.3 o DhdTdd [8] pedM ce when the et I o phyern i cotble.

As eate consequence o Threm 3.3, we hve the foog tence

COROLLARY 3.4. Let (,) be a meurble pce th a Su fy. r
C;Xd;Ad,Bd;Pd)dI be a rdom genered eu that X dIXd is pcompact.
Suppo that I is countable d the [oo contion e atified fore I:

(i) Xd i a non-empty convex Posh subset of topoloc ector pace Fd;
() o (,) a x, ((,), .o.-. d o(,)

() or my ven , each X, -,() ( x
x- (,)} opt. i. x;

0) o a, fo x, o(,);
(v) for y ven , there st non-empty dosed d compact ubet K() of X d

0() (()) x.h() oC(,) P(,)) o x k K().
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Then F has a sequence of random equilibrium {n}.- from f to X such that for all I,
(()) B(,()) nd A(,()) P(,()) o n.

PROOF. Note that for each fixed w 6 fl, the set {z 6 X Ai(w,z) n P(w,z) }
Uex,(A,,(y)NP, (y)) which is open by (iii). Thus all hypotheses of Theorem 3.3 are satisfied.
By Theorem 3.3, the conclusion follows. [3

Corollary 3.4 is also stochastic version of Corollary 4.4 of Tan an Yuan [20] which in turn
grTom ..S oZ Tourist [.e], Coron-y 2 o Tul [2Z] (o Coro-y 2 [2S])
and and Theorem 6.1 of Yannelis and Prabhakar [30] to non-compact generalized games with I
is countable.

4. RANDOM EQUILIBRIA IN LOCALLY CONVEX SPACES

Finally, by the same argument as employed in Theorem 3.3 and the existence theorem of
equilibria of generalized games in locally convex topological spaces (i.e., Theorem 5.4 of Tarafdar
and Yuan [25] (see Mso Theorem 5.6 of Ding and Tarafdar [8]), we have the following random
equilibrium existence theorem for a random generalized game (resp., random abstract economy)
with countable number of players (resp., agents) in locally convex topological vector space.

THEOREM 4.1. Let (fl,]) be a measurable space with a Suslin family and r
(Q;Xi;Ai,Bi;Pi)iel a random generalized game such that I is countable and the following
conditions are satisfied for each 6 I:

(i) X is a non-empty convex Polish subset of a locally convex vector space F;
(ii) for each w 6 12, As(w, .)" X -, 2x’ is lower semicontinuous and for eaz.h (w,z) 6 fl x X,

A(w,z) is non-empty and coAi(w,z) C B(w,z); and Dom(A C P) and GraphB 6
z (R) (x x);

() o, e , A(,.) n P(,.) i
(iv) for each given w 6 a, the set E,(w) {z 6 X" A,Cw, z) N P,(w,z) # @} is open in X;
(v) for any given w 6 a, there exist a non-empty dosed and compact subset K(w) of X and

o co(A,(w,y) N P(w y)) for all y 6 X \ K(w).z(to) (z(w))iei 6 X such that zi(w) 6

Then F has a sequence {b,,},,__ of measurable mappings from f to X such that for each
n 1,2,.-., r(b,,(w)) 6 B(w,b,(w)) and A,(w,,(w)) P(w,,(w)) for w 6 d
for 6 I.

PROOF. For each 6 I, define g’i" fl -* 2xxx by I’i(w) {(z,z) 6 X x X Ai(w,z)

@(w) @ for ea ed w 6 fl by our sumptions (1)-(v) d Threm 5.4 of Wddd
Yu [25] (s o Whrem 5.6 of DgdWdd [8]). Let A {(z,z) 6 X x X’z 6 X}.
Dee a mappg B" flx X 2x by B(w,z) Hiex(w,z) for ea (w,z) 6 x X. Since
for ea 6 I, GraphB 6 @B(X x X), then it is efly to s that GraphB 6 E @B(X x X).
Note that Graph eGraph [(fix X [eD(A P)]) x X] [GraphB (G x
d GrahB e S(X x X), s6e 9(A P) e Z S(X) for ea e d I i,

co,table, I(D(A P)) 6 E @ B(X). Therefore Graph 6 @ B(X x X). Hence
@ satisfies con&tions of Threm A. By Threm A, there sts a sequence {},=, of
meable sections of @, where X x X. But then for ea n 1,2,-.-, there
ests X su that (w) ((w),#(w)) for w 6 . Now foHog the
proof in Theorem 2.5, it is e that ea is meable. Morver, for ea n 1, 2,..
A(w,(w))P(w,(w))’= d =((w)) 6 Bw,,(w)) for w 6 d for 6

Theorem 4.1 is also a stochastic version of Theorem 5.4 of Taradar and Yuan [25] (which in
turn, generalizes Theorem 5.6 of Ding and Tarafdar [8], Corollary 3 of Borglin and Keiding [3,
p.315], Theorem 4.1 of Chang [4, p.247] and Theorem of Sharer and Sonnenschein [19, p.374]
with countable number of players (resp., agents). For other kinds of existence theorems of
random equilibria for random generalized games, we refer the interested readers to Tan and
Yuan [21] and Yannelis and Rustichini [29].
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