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ABSTRACT. In this paper a collection ofefficient algorithms are described for solving an algebraic system
with a symmetric Toeplitz coecient matrix. Systems of this form arise when approximating the solution of
boundary value Volterra integro-differential equations with finite difference methods. In the nonlinear case,
an iterative procedure is required and is incorporated into the algorithms presented. Numerical examples
illustrate the results.
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1. INTRODUCTION

The form ofthe system to be solved in this paper is

AY F(Y) (I I)

where F(Y) is a nonlinear function in an unknown vector Y and A is a symmetric Toeplitz matrix. In [1,4]
circulant matrices and synunetric band matrices are discussed in connection with solving a linear system.
In [7] there is an application of a fast algorithm to a system of the form (1.1). In [5] this algorithm
involves the solution of a second order Volterra integro-differential equation. The background for that
work and the work considered here is based on the Sherman-Morrison formula [2,p.113]. Consider two
square matrices A and B and two column vectors u and v related by

A B nvT

Ifthe inverse ofB exists and vTB’*u, 1, then

A"t B" + B’muvTB" I/(I- vTB’u)

In this paper an application involving the numerical solution of a second order boundary value
problem of the Volterra type will be discussed. In particular, the problem model will be nonlinear in the
unknown and the computer implementation will employ the Sherman-Morrison formula. Two numerical
examples will be given to compare this method with an efficient form ofthe LU method and a variant ofthe
method described in [5] and [7].

2. THE DISCRETE SOLUTION

Consider a nonlinear integro-differential equation ofthe form

y)(x) f(x,y(x),z(x)), O< x a (2.1)
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where

z(x) " K(x,t,y(t))dt

subject to the boundary conditions y(0)=b and y(a)=b Let Rl={(x,t,y):0za, lYl<(R)} and

R2={(x,y,z):0xa, lyl<(R),lzl<(R)}. For equation (2.1) defined for points in R and R2, the following
conditions are assumed:

I) fand K are uniformly continuous in each variable

ii) for the function fand for all (x,y,z), (x,y,z) and (x,y,z) in Rz,

]ffx,y,z)- f(x,y,z)l ly- YI

lffx,y,z) ffx,y,z)l lz- zl

iii) for the function K and for all (x,t,y) and (x,t,) in R,

IK(x,t,y) K(x,t,y)l s l=Jly- YI and

iv) the functions fr’ fz and Kr are continuous and satisfy

I(x,t,y)< 0 for all (x,t,y)6R and (x,y,z)6R2.
f(x,y,z)>0, fz(x,y,z)a0 and

A proofofthe uniqueness of a solution for problems satisfying the above can be found in Shaw [6].

To develop a discrete solution for (2.1) let IN={X. x--ih, I=0(1)N, Nh=a} be a partition of
I=[0,a]. A general k-step method of solution is given by

where

gi Ya*i h2 [i f(Xa*i’Yt*i’ga*i) nf0(l)lq-k
i-O i-O

-. h %x(..,j,y?, > ,, "-o 0
j-O

(2.2)

The coefficients {wj} denote the weights for the choice ofa quadrature rule. I,n addition, there are special
rules required in connection with starting values. These rules have weights w, msmax{k,s} and s is related
to the order ofthe method. Note that when k=-2 the two boundary conditions provide the required auxiliary
conditions and the (N+1)x(N+1) system can then be solved. In the linear case only one solve is required but
in the nonlinear case an iterative scheme must be employed.

For the remainder ofthis section we consider a model ofthe form

ya)(x) y(x) + g(x,y(x),z(x))

with boundary values y(0)=b and y(a)fb. Applying a two-step method to (2.3) gives rise to an

(IN+l)x(N+1) system. Furthermore, if the method for solving the differential equation is denoted by (p,o)
with

then a particular method, known as Numerov’s method, has (ao,a l,a 2)=(1, -2,1) and
[3o, [3 ,13z)=(1/12,10/12,1/12). The quadrature rule Q selected as part of this particular method is the fourth

order Newton-Gregory rule. Conditions for the convergence oftwo part methods ((p, o),Q) can be found
in [6]. To present the method in a way which is more appropriate for the next section, remove the terms
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involving Yo and Ys to the fight hand side to give an (N-1)x(N-1) system. This system can be expressed as

(j-h2B)V h2(BG(Y) + S(Y)) R (2.4)

where

,scr)--

go] h

(.i- 1,

Denoting (J-h 2B) by C we have

2 0

oC C

C C

Of particular interest is that C is a diagonally dominant symmetric Toeplitz matrix.

3. ALGORITHM DEVELOPMENT

To solve system (2.4) an iteration scheme must be employed. Using {i} to denote the = iterate gives

(J-hZB)Y i’* h Z(BG(Y i) + s(yi)) + R (3.1)

There are several ways to solve system (3.1). For example, by efficiently using LU decomposition on the
Toeplitz tridiagonal symmetric system the operation count is about 9n, where n is the size of the system.
For repeated applications with the same coefficient matrix C and different fight hand sides the count is
5n. The form ofthe LU method used can be described as follows:

2)

3)

4)

5)

assign values to elements ofC:
co=l-hZ/12
c=-2.0-10h2/12
c=Co

compute superdiagonal ofU

for j=2,N-
uj=(u,c,-coS/Uj.,

perform forward substitution to solveLx (b represents the fight hand side of (3.1))
and the subdiagonal ofL is generated fi’om the superdiagonal ofU

Xl=bl
for j=2,N-

xj--bj-xjq where =co/ujq
perform backward substitution to solve Uy=x

ys.--xs./us.
for jfN-2,1,-

j=(Xj’CoYj+I)/Uj
if IY+ > tolerance, repeat from step 3

This method of efficiem LU decomposition will be referred to as Method 1.
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Working with C, note that {c,I>{CO{ +lcxl, %=5 and the division by -c gives a matrix which is
tridiagonal symmetric and diagonally dominant. The nonzero elements in each row are given by (-1, ., -1)
with .=2+(10h2/12). Denoting this matrix by D gives

Dyi. _I 012(BGCY i) scxr i)) R) (3.2)
oo

Let u=(-g)e] and v--e, where e=(1,O O)T. Perturb D such that 13 is given by

Then it is easily seen that Dffib- uv’. Method 2 uses an LU decomposition of f) from [4] as follows:

For ease ofnotation, let K =h2(BG(yi)+s(Yi))+R represent the s iterate ofthe right hand side ofequation
(3.2). Let aj=(’J-gJZ’2)d where d=g’(1-’a’+)) ", m=N-1. The steps in the method are given by

1) factor b into its LU decomposition and determine the aj, j=1(1)N-
2) solve the system Z’= K where Zt= ()
3) evaluate Y’ (j) where ,+’ - 9, J= (I)N-
4) if IY/’ -lil > tolerance, repeat from step 2

There are just a few calculations for step and approximately 4n calculations for step 2. The remaining steps
require about 5n operations for a total of9n. For repeated applications with the same 13 the operation count
is about 6n.

As a third approach, Method 3 utilizes the method given in [2,p.113]. To obtain an approximate
solution the steps are as follows:

1)
z)
3)
4)
)

factor15 imo its LU decomposition
solve 13W u
solve 13 Z Y
calculate the constant 13--vZ/(1-vTW) and set Y Z+I3W
if IY/’ -1 > tolerance, repeat from step 3

As before, step essentially requires just a few operations and step 2 requires 4n operations. Since
1,0 0)3, step 4 requires 2n operations. The remaining steps give a total of9n operations that reduces
to 6n with repeated iterations.

To close this section, we will look at the convergence of the three methods. For the nonlinear
problems, each method is iterative in nature. For the direct LU method, the application of the method is
equivalent to solving

Y+’= A" (hX(BG(Y) + S(Y)) + R).

Subtracting the same equation with the exact solution ofthe discrete system being used gives us

E’= h2A"B(G(Y) Ca(Y) + S(Y) S(Y))
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from which
IF-.,[I < hI/[HIBNII (3.3)

where L is a Lipschitz constant and convergence takes place provided h2LI,IIB|<I. Note that A is a
continuous function of h which tends to J as h-,0. The matrix -A is monotone [3,p.360] and hence is
invertible. The inverse of a monotone matrix has nonnegative elements. Since -J and -A are monotone and
(-A)-(-J)0 we see that (-J")-(-Aa)0 [3,Theorem 7.5, p.362]. It follows, therefore, that 0s(-A’l)s(-J).
From [3] it is also known that IFI N2/8 and therefore Il is bounded.

The other two methods are somewhat similar so only the last one will be analyzed. There are two
parts to the iteration process. In the first part, an approximation is obtained. By adding an appropriate
correction, the next iterateY is given by

Y/ =b "’ K + = 15 "vb -’ K%. (3.4)

Again, exact values for the solution of the discrete problem are substituted and the result is subtracted
from (3.4) to give

Ei+’ 15 -’ hZB[G(Y)-G(Y)+S(Y)-S(Y)] + I -1 vx15 "h2B(CK’Y’)-G(Y)+S(Y)-S(Y))u. (3.5)

In particular, vTb "* h2B(G(Y)-G(Y)+S(Y)-S(Y)) is just a constant because ofthe definition of v. Hence,
equation (3.5) can be written as

Ei+’ (I -* + x I -1
nv 1 -1 )h2B(G(yi).G(Y)+S(yi).S(y))

hZA-’B(G(y).G(Y)+S(y).S(y)).

By taking norms and assuming F satisfies a Lipschitz condition we have the same result as (3.3).

4. NUMERICAL RESULTS

Two Volterra integro-differential equations of the form (2.1) are used to illustrate the methods
described. Method is the efficient form ofthe LU method, Method 2 is a variant ofthe fast algorithm given
in [4] and [6] and Method 3 is the implementation ofthe Sherman-Morrison formula [see, 2]. The iteration
count for all methods is given along with the average CPU time in seconds. AlL programs were nan on a SUN
SPARC 20 in double precision arithmetic.

Example 1 y// y -x
xS

/ 2 x ((x-l)* + I) + at, y(0)=l, y(1) =l+e
4

exact solution: y= x +

step size (h)

10.01

n

"ll 1[ Method II Method 2 ][ Method i, "1
il II#i, a,o llavscP  avgCPUtime, .avgC.PUtime

1
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llx fExample2: 3
.// er + 2 + + (x+t)y dt, y(0)=0, y(l)=l

30

exact solution: 3" x

Another approach to solving system (3.1) is given in the paper by Yah and Chung [7]. Their modification
reduces the operation count for step 3 from 5n to 4n+2t where represents the number of operations in the
correction term approximation (tsn). The actual value of depends on the degree ofthe diagonal dominance
ofthe coefficient matrix C. To describe their algorithm, one can replace the approximation to the correction
term in step 3 ofMethod 2 by

y i.1 Z

Let b=t"]. The vector p is given by pfCu,b b’,0 0)T where the number of components in p is dependent
on [.1 and a tolerance %. In particular, % is chosen such that

tog(ll 2)t() >
togClbl)

For the matrix C as given in (3.1), as the step size h used in the k-step method and quadrature rule in (2.2)
decreases I.] approaches 2 and b approaches 1. This gives a value of > N and the method ofYan and
Chung [7], as pointed out in their paper, will not work.
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