CORRIGENDUM

A NOTE ON SELF-CONJUGATE n-COLOR PARTITIONS

A.K. AGARWAL

Department of Mathematics Panjab University Chandigarh - 160014, INDIA

A theorem involving self-conjugate *n*-color partitions was proved by A K. Agarwal and R. Balasubrananian in their paper entitled *n*-Color Partitions with Weighted Differences Equal to Minus Two, *Internat. J. Math. Math. Sci.*, Vol. 20, No. 4 (1997), 759-768. There are some errors in this theorem which are corrected as follows:

THEOREM 1. Let $A(\nu)$ denote the number of *n*-color self-conjugate partitions of ν such that each part is self-conjugate. Let $B(\nu)$ denote the number of ordinary partitions of ν into odd parts. Then $A(\nu) = B(\nu)$, for all $\nu \ge 0$. Hence

$$1 + \sum_{\nu=1}^{\infty} A(\nu) q^{\nu} = \prod_{n=1}^{\infty} \frac{1}{1 - q^{2n-1}}.$$
 (1)

EXAMPLE. A(5) = 3, since the relevant partitions are 5_3 , $3_11_11_1$ and $1_11_11_11_1_1_1$. Also, B(5) = 3, since in this case the relevant partitions are 5, 311, 11111.

THEOREM 2. Let $C(\nu)$ denote the number of all *n*-color self-conjugate partitions of ν . Let $D(\nu)$ denote the number of partitions of ν such that each even part 2n can come in [n/2], where [] is the greatest integer function, different colors denoted by

$$(2n)_1, (2n)_2, \cdots, (2n)_{[n/2]}$$

Then $C(\nu) = D(\nu)$, for all $\nu \ge 0$. Hence,

$$1 + \sum_{\nu=1}^{\infty} C(\nu) q^{\nu} = \prod_{n=1}^{\infty} \left(1 - q^{2n-1} \right)^{-1} \left(1 - q^{2n} \right)^{-[n/2]}.$$
 (2)

PROOF OF THEOREM 1. Let II be an *n*-color partition enumerated by $A(\nu)$. Then in each part m_i of it, m must be odd. Because $m_i = m_{m-i+1} \Rightarrow m = 2i - 1$. Thus if we ignore the subscripts of all parts in II, we get a unique ordinary partition of ν into odd parts. Conversely, if we consider an ordinary partition of ν into odd parts and replace each part 2a - 1 by $(2a - 1)_a$ we get a unique partition enumerated by $A(\nu)$. This bijection proves Theorem 1.

PROOF OF THEOREM 2. Let σ be an *n*-color partition enumerated by $C(\nu)$. This implies that the parts of σ are either self-conjugate or they appear in pairs of mutually conjugate parts. It was observed in the proof of Theorem 1 that a part can be self-conjugate if it is odd. Also, the number of pairs of mutually conjugate parts corresponding to any even integer 2n is [n/2]. These arguments together prove Theorem 2

REMARK. It was shown in [1] that $C(\nu)$ of Theorem 2 also equals the number of symmetric plane partition of ν .

REFERENCES

1. A.K. Agarwal, Proceedings of NERCOM (1997), 35-46, Assam Academy of Mathematics.