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ABSTRACT. This paper examines smoothness attributes of probability measures on lattices which

indicate regularity, and then discusses weaker forms of regularity; specifically, weakly regular and

vaguely regular. They are obtained from commonly used outer measures, and we study them mainly for

the case of M() or for those components of M(.) with added smoothness prerequisites. This is a

generalization ofmany concepts presented in my earlier paper (see 1]).
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1. INTRODUCTION
Let X be an arbitrary set and a lattice of subsets of X. A() denotes the algebra generated by

and M() those finitely additive measures on A(). Ma() denotes those elements ofM() that are c-

smooth on ; while MR() denotes those elements ofM() that are -regular. To each p E M() we

will associate a finitely subadditive outer measure #’ on P(X), and to # E M() is associated an outer

measure p". The relationships between/, #’, and #" on and ’ (the complementary lattice) are

investigated. This leads to a consideration ofweak notions ofregularity, which can be expressed in terms

of#’ and/z". In this respect the normal lattices are particularly important since for such lattices regularity

of/z coincides with weak regularity. We show that if# N(), those/z M() such that for L,, L,
Ln, L ,/z(L) inf/z(L,,) and if is complement generated then/z is weakly regular. Combining

these results gives conditions for certain measures to be regular. We adhere to standard lattice and

measure terminology which will be used throughout the paper (see e.g. [2-6]) and review some of this in

section two for the reader’s convenience.

2. DEFINITIONS AND NOTATIONS
Let X be an abstract set. Let be a lattice of subsets of X. We assume throughout that and X

are in . IfA C X, then we will denote the complement ofA by A’ (i.e. A’ X A). If is a lattice

of subsets ofX, then ’ {L[L } is the complementary lattice of.
LATTICE TERMINOLOGY

DEFINITION 2.1. Let be a lattice of subsets ofX. We say that:

1. is a &lattice if it is closed under countable intersections; 6() is the lattice of countable

intersections of sets of.

2. is disjunctive if and only if x E X, L , and x L imply there exists A such that

x AandAL =0.



724 D. SIEGEL

3. /; is complement generated ifL E/; implies L L, where Ln E/;.
n--I

4. /; is compact if and only ifX [.J L’o, Lo /;, implies there exists a finite number of L’o that

cover X.

5. /; is countably compact if and only ifX J L:, Li E/;, implies there exists a finite number of
i=1

the L’, that cover X.
6. /; is countably paracompact if, for every sequence {L,) in/; such that L, , there exists a

sequence {L, } in/; such that L, c L and L
7. /; is norma if and only if A, B /; and A f’l B imply there exists C, D /; such that

ACC’,BCD,,andC’ND’=.

MEASURE TERMINOLOGY
Let/; be a lattice of subsets of X. M(/;) will denote the set of finite-valued, bounded, finitely

additive measures on A(/;). We may clearly assume throughout that all measures are non-negative.

DEFINITION 2.2.

1. A measure p E M(/;) is said to be or-smooth on/; if Ln /; and L, imply/(L) --, 0.

2. A measure p M(/;) is said to be -smooth on A(/;) if

imply (A.) - 0.

3. A measure/ 6 M() is said to be -regular if, for any A A(),
(n) sup((): c ., ).

NOTATION 2.3. If is a lattice of subsets ofX, then we will denote by

Mo() the set olaf-smooth measures on ofM()
M (/;) the set of7-smooth measures on A(/;) ofM(/;)
Ms(/;) the set of/;-regular measures of

M() the set of-regular measures ofM ()

DEFINITION 2.4.

1. Let/ M(). Then/ E N() if L, /; and Ln L /; (in particular, if is 6), L, ,
n=l

imply/(L) infp(L,).

2. If/z E M(/;), then the support ofp is S(p)

REMARK 2.5. Listed below are a few basic important facts that will be used throughout the paper
(see [7,8] for further details):

I. M(/;) Ma(/;) Mo(/;)
2. Mo() D N(/;) D M(L)
3. If/ 6 M(), then there exists v 6 Ma(/;) such that/ s v(/;) (i.e. I(L) <_ v(L), all L 6 )

and p(X) v(X).

3. REGULAR PROBABILITY MEASURES
Discussion of/;-regular measures (p 6 Ma(/;)) takes place in this section. Conditions for regularity

and various resulting properties are examined.

THEOREM &l. Let/; be a lattice of subsets of X. Then p 6 Ma(/;) if and only if # 6 M(/;)
and p(A) inf{p(L’) A C L’, L 6/;}, A 6 A().

PROOF. I. Suppose p 6 Ma(). Then p(A’) sup{/(L) L c A’, L 6 }. Hence
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Therefore #(A) inf(#(L’) A c L’, L E

2. Reverse of I. is sufficient proof.

THEOREM 3.2. Let 12 be a lattice of subsets ofX. Suppose # E M(12) and

#(L’) sup(#(/.,)" L c L’,L 12}. Then# Ma(12).

PROOF. Suppose # 6 M() and #(L’) sup{#(L) L C L’,L 12}. This implies

#(L) #(L’) L (2 ’, ].., e 12 by Theorem 3.1. Let .4
i--1

where Li, L, 12 and disjoint. Consider L n L; L, L 12. Since every L 12 is 12’oOuter regular with

respect to #, there exists ’ .,’
nd’ uK Lug.

Now, in general, A L, n where Li, i disjoint and > 0. There exists L, D L, n L, such

(r,) "-’ o(r,) -,
that# Ltn +# ># Then U LiD Lin =AandUL, E

i=1

#(A) :# (Ltn)
i=1

#(Lt n)> #(:) >-#

Hence #(A) inf{#(L’) A C Lt, L E }. Therefore # MR(), by 3.1.

THEOREM 3.3 Let #1 MR(L), v2 M(12), #1 _< #2(), and #1 (X) #2(X). Then

#1 #2.

PROOF. Suppose #1 _< #2(12) and let L C ’, L, ., E 12. This implies 2 _< #1 (12’) and

(L) _< #2() _< #I(L’). If w2(L) _< #1(), for any L’D L, then /2(L) < inf{#l(’)
L c t} #I(L), since # MR(). Hence #2 < #1(/2) and, consequently, #1 #2(12). Therefore

#1 12 since #1 (X) =/.v2 (X).
THEOREM 3.4. Let 12 be a lattice of subsets ofX. Suppose # MR(12) and # Mo(12). Then

Mo().
PROOF. Given # MR() and # E Mo(12). Let {A,} be in A(12) and An .L 13. Then there exists

Ln C A,, L, 12, and #(An) # < #(Ln), since # MR(L;). Now, L1,L1 nI,L1 nL2 nL3,...
are in 12 and q). So #(LlnLa)<#(AlnA2)=#(A2)<#(Lln/)++. By induction,

# A, <_ # L, + for all n. Consequently, we may assume L, .L q) and #(A,)< #(L,.,)+e,
’-1

all n. Then lira #(A,.,) < lira #(L,.,) + ; and lira #(L,) 0 since # Mo(12). This implies

lira #(A,.,) < e and e > 0. Hence lim#(A,) 0. Therefore # M(12), since # is countably additive

on A().
THEOREM 3.5. Let # < v(), where # m(), v M(), and #(X) v(X). If is

.orl. then ,(L’) p{#(): c L’;L.L }.
PROOI. Since ,, m(:), ,,(L’) p{,,(L): c L;L,L :}. This impli ,,(L’)

< v(.), > 0, for some L E where L C L. By normality, C A’ C B C L’, where A, B .
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Then u(L’) e. < v() <_ v(A’) <_ p(A’) <_ p(B) <_ v(B) <_ v(L). Hence v(L’) sup{p(B)
B C L’,B E }, and p(B) ,,/z() by an e-argument. Therefore v(L’) sup{/z() C L’, E .

THEOREM :$.6. Suppose # 6 MR() and A MR(’) such that/z _< ,(). Then is normal if

and only if#(L’)= sup{A(A)" A C L’,A }.
PROOF.
1. /z _< ,(’) implies A < Iz(), by regularity. Therefore, if is normal, then #(L’)= sup{A(A)
A C L’, A } by 3.5.

2. Suppose/z(L’) sup{A(A) A C L’,A . 12}. Let Izl,lz2 M,(12) such that/z </z1() and

# </z2(12). Then #1 _</z < A(12’) and #2 </z < A(12’). This implies /z(L’) =/2(L’)
sup{A(A) A C L’,A 12}. Hence/zl =/z2. Therefore, is normal.

THEOREM 3.7. Suppose 12 is normal and complement generated. Then # 6 N(12) implies

PROOF. Since 12 is complement generated, there exists L, L, 12 such that L L, where

Ln . By normality, L C A’ C B, C L, where A,, B, E , and we may assume that A, , B,, .
Then L B, L. Now let # E N(). This implies /z(L) inf/z(B,) inf#(A). Hence

# MR(12)by 3.1, and N(12) C Mo() by 2.5. Therefore p M().

4. OUTER lVlEASURS
In this section we consider p M(12), and associate with it certain "outer measures"/z’ and #". In

general, they differ from the customary induced "outer measures"/z" and/z*. We seek to investigate the
interplay ofthese outer measures on the lattice and, conversely, the effect of; on them.

DEFINITION 4.1. Let/z E M() such that/z > 0 and let E be a subset ofX.
1. #’ (E) inf{#(L’) E C L’, L 12} is a finitely-subadditive outer measure.

2. "(E) inf Y (/.,) E C /-,,/_.,, 12 is a countably-subadditive outer measure.

3. (E)= inf{p(A)" E C ,4,.4 . A(12)} is a fmitely-subadditive outer measure.

4. /’(E) inf /(Ai) E C A,, A A(12) is a countably-subadditive outer measure.
i=1

DEON4.2.

1. Suppose v is an outer measure and let E be a subset of X. Then E E 8,, the set of

v-measurable sets, ire(A) v(A n E) + v(A E,’) for all A C X.
2. v is said to be a regular outer measure if, for A, E C X, there exists E

ana () ().
PROPERTY 4.8. Proofs will be omitted.

1. If 12 is countably compact and/ M(), then/’ #"().
2. If. v(:), men.’= ,"(’).
3. / M,,(12) and ’ =/"(’), where/" is regular, imply/
4. If0 E N(12) and 12 is 6, then/’ =/"(12).
5. Suppose/ N(12), 12 is 6, and 12 C :,. Then/
THEOREM 4.4. Let p M,(12). Then

(a) ,(x) ,"(x),
(b), < ," < ,’(),
(c) ," _< , ,’(’).
PROOF. (a) Clearly/"(X) </(X). If/"(X) < #(X), then there exists L ’, 1, 2,

such that X L and /(L) </(X). But /(L) lim /(L,) _> # L Also
z=l z=l i=1
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O L’, T X and OL 6’. This implies that lim#(OL’, =/(X)since /6 M(). Therefore
\I 1

(x) d’(x).
) Suppose there ss L e such tt (L)>"(L). n "(X)"(L)=

#"(L’) < #(L) + #"(L’). en #"(X) ."(L) + #"(L’) < #(L) + #"(L’), but #" #(). Ts
implies "(X)< (L)+ (L’)= (X), wch contradis (a). Hence

evehere clly. Thus " ’(). Therefore
(c) Clly" S ’(’) rod, by detio ’(’). erefore" S, ’(’).
OM 4.5. Suppose u is a fite, re, fitely-baddifive outer mure defined on

P(X), the s of subsets ofX. E6 fired oy fly(X) v(E) + v(E’).
PROOF. I. Suppose v is a fiitely-subaddifive re outer mure md E 6 $. Then

2. Suppose v is a tely-badfive rel outer me md v(X)= v(E)+ v(E’). Let
B 6 u. Th by rel, thee egs a t F C X such that F C B d v(F) v(B). The sce
B 6 , v(E) v(E B) + v(E B’) md v(E’) (E’ B) + (E’ B’). So

(x) (E) + (E’) (E B) + (E
a (B) +() (X),

since B 6,9,. Also, v(B f] E) + v(B N E’) + v(B’ N E) + v(B’ N E’) v(B) + v(B’) since all

v(X) finite measure. Now subtract from the equation above ,(B’ Cl E) 4- v(B’ Cl E’) _> (B’), which

is true by the finite subadditivity of v. Then v(B E) + v(B E’) < v(B). Also, F 6 E C B N E
and F ;] E’ C B C E’. This implies

v(F fq E) + v(F E’) _< v(B Cl E) + v(B Cl E’) _< v(B) v(F).

Hence v(F) v(F I"1 E) + v(F Cl E’). Therefore E 6 .
TIOREM 4.6. Suppose/ _< v(), where/ 6 M() and v 6 Ma(). Then:

(a) < v v’ <
(b) if is normal, then/’ v’(:).
PROOF. (a) Since v 6 Ma(), v(E) ’(E) inf{v(L’) E C L’,L 6 }. Also,/ < v()

implies v _< #(’), which implies u’ _< #’() and ’ </’(’). Therefore/ _<
(b) Let L 6 . Then, by normality,

’(L) (L) (X)- (L’) (X) sp{(t,) Z c.L’,i, e r.}
(X) sp{.(L) Z

Therefore/’ ’().

5. WEAKER NOTIONS OF REGI/LARITY

Previously we have considered some properties related to 6 Ma(). We now want to consider

weaker notions of regularity, and see when they might coincide with regularity; and, in general, to

investigate their properties and interplay with the underlying lattice.

DEFINITION &l. Let L 6 , where is a lattice of subsets ofX.
1. A measure 6 M() is said to be weakly reffalar if(L’) sup {’ (L): , c L’, Z 6 }.
2. Ameasurep 6 Mo() is said to be vaffaely regular ff#(L’) sup {#"(_,): Z C L’,_, 6 }.
NOTATION .2.

Mw() the set ofwealdy regular measures of

Mv() the set ofvaguely regular measures ofM’()
LEMMA 5.3. M(f,) C Me(f,) C Mw(f,)f’l
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REMARK 5.4. If =/2"(.), then Mv(/) Mw(/) I-I M’o(/). This occurs if:

(a) / is countably compact,

(b) v N(Z:) and is *,
(c) / is normal and complement generated,
(d) / is -normal.

TBEOREM 5.5. Suppose /2

_
v(2), where /2 E Mw() and v E MR(). Then /2 v()

implies/2 v.

PROOF. Let Mw() /2 < v MR() and suppose/2’ v(). Then/2 < v d </2’() by
4.6. Now, /2 Mw() implies /2(L’) sup{/2’() , C L’;L, } and v MR() implies

v(Z’) sup{v(Z) Z C L’,L,, e }. Then, since /2’= v(), /2(L’) v(Z’), which implies

/2 v(’). Therefore/2 u, since/2(X) v(X).
THEOREM 5.6. Suppose is complement generated. If"/2 N() and/2" is a regular outer-

measure, then/2 G Mv() C Mw(/n Mo().
PROOF. Suppose is complement generated and/2 N(). Then/2 G Mo() by 2.5; and

/2 =/2 =/2(’), by 4.3 and 4.4. Now let L ( . Then, since is complement generated, L L’,

L, G , L’ . By the regularity of’/2" and the Pact that L’ C L’, we have
n=l

But /2 =/2’--/2"(’) since /2 N(L;). Thus /2(L’) sup{/2"(_,)" _, : L’, L;}. Hence

/2 /rv(/:). Therefore, by 5.3,/2 E 2rv(/:) C 2Irw(/:) N
THEOREM 5.7. Suppose/: is normal and/2 2Irw(). Then/2
PROOF. Suppose is normal and/2 2/w(). Let/2 < v(), where MR(). Then, using

4.6,

sup{/2’(_,) l_/;n,., ..} -/2(1.,’) since /2

So/2 v(.’), which implies/2 v since/2(X) v(X). Therefore/2 6 MR(.).
REMARK 5.8. We saw in Theorem 5.7 that if is normal, then Mw(.) Ma(f..). However, the

converse is not true. For example, let { O, X, A, B, A, 13 B}, where A,B C X(A,B # 13) such that

A f’l B @ and A 13 B # X. Here is clearly not normal, but Mw(.) MR(E.).
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