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ABSTRACT. A general vector-valued variational inequality (GVVO is considered. We establish the
existence theorem for (GVVI) in the noncompact setting, which is a noncompact generalization of the
existence theorem for (GVVI) obtained by Lee et al., by using the generalized form ofKKM theorem due

to Park. Moreover, we obtain the fiu2y extension ofour existence theorem.
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1. INTRODUCTION
Recently, Giannessi [1 imroduced a variational inequality for vector-valued mappings in a Euclidean

space. Since then, Chen et al. [2-6] have intensively studied variational inequalities for vector-valued

mappings in Banach spaces. Lee et al. [7] have established the existence theorem of a variational

inequality for a multifimction with vector values in a Banach space.
On the other hand, Chang and Zhu [8] introduced the concept of variational inequalities for fuzzy

mappings in locally convex Hausdorff topological vector spaces and investigated existence theorems for
some kinds of variational inequalities for fazzy mappings, which were the extensions of some

theorems in [9,10,11,12]. Lee et al. 13 obtained the fazzy generalizations of new results of Kim and

Tan [14], and they [7] established the fuzzy extension of their existence theorem. Our motivation of this

paper is to consider the noncompact cases of the existence theorems of variational inequalities for

multifimctions with vector values or fuzzy mappings in Banach spaces obtained by Lee et al. [7].
Let X and Y be two normed spaces and D a nonempty convex subset ofX. Let T" X -, 2L(x’Y)

be a multifunction, where L(X, Y) is the space of all continuous linear maps from X into Y, and C a

closed pointed and convex cone ofY such that IntC 0, where Int denotes the interior.

Consider the following generalized vector-valued variational inequality:

(GVVI) Find z0 e D such that for each x e D, there exists an s0 T(x0) such that

(so, z z0) Int C,

where (so, V) denotes the evaluation of so at
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When T is a mapping fxom X into L(X,Y), (GVVD reduces to the following vector-valued

variational inequality (VVI) considered by Chen et al. [3,5,6].
(VVI) Find z0 G D such that (T(z0),z z0) IntU for all z D.
The above inequality (VVI) is a generalization of the following classic scalar-valued variational

inequality (vI).
(VI) Find z0 D such that f(z0),z zo) _> 0 for all z D, where f R" --, R" is a given

mapping.
Our purpose in this paper is to establish the existence theorems for (GVVI) in the noncompact

setting, which is the noncompact case ofthe existence theorem for (GVVI) obtained by Lee et al. [7], by
using a particular form of the generalized KKM theorems due to Park [15-17]. Our existence theorem

subsumes Theorem 2.1 of Cottle and Yao [18], the part (i) of Theorem 2.1 of Chen and Yang [6],
Theorem 2 of Yang [19] and Theorem 2.1 ofLee et al. [7]. Moreover, we obtain the fitzzy extension of

our existence theorem. Our fuzzy extension is a generalization of Theorem 3.1 of Lee et al. [7]. Now
we give the definition ofa KKM map.

DEFINITION 1.1. Let D be a subset of a convex space X. Then a multifimction G D 2x is

called KKM if for each nonempty finite subset N of D, coN C G(N), where co denotes the convex

hull and G(N) U {Gx
A conve space X is a nonempty convex (in a vctor space) with any topology that inducea the

Euclidean topology on the convex hulls of its finite subsets. Thus, a convex subset X of a topological
vector space E with the relative topology is automatically a convex space. For details of the convex

space, see Lassonde [9].
We say that a subset A of a topological space X is compact& closed in X if for every compact

subset K c X the set A K is closed in K. We need the following particular form of the generalized
KKM theorems due to Park [16-18], which will be used in the proofofour Theorem 2.

THEOREM I. Let X be a convex space, K a nonempty compact subset ofX, and X 2x a

KKM multifimction. Suppose that

(1) for each X, G() is compactly closed; and

(2) for each finite subset N ofX, there exists a compact convex subset Lv ofX such that N C LN
and s fl {S() / s) c K.

Then we have

2. Existence Theorems

First, we give the following definitions for the existence theorems for (GVVD.
DEFINITION 2.1. Let X be a normed space with dual space X* and T X --, X* a mapping.
1. T is said to be monotone iffor any z,/ X, (T(z) T(), z t) _> 0.

2. T is said to be pseudomonotone if for any z,t X, (T(z),/-z)_> 0 implies that

(T(I/),- z) > O.
3. T is said to be hemicontinuous if for any z, tt, z 6 X, the mapping a - (T(z + cry), z) is

continuous at 0+.
DEFINITION 2.2. Let X, Y be two normed spaces, T X --, L(X, Y) a mapping and U a closed,

pointed and convex cone ofY such that Int U .
1. T is said to be U-monotone iffor any z, F X, (T(z) T(/), z F) U.
2. T is said to be U-pseudomonotone if for any z,/ X, (T(z), F z) Int U implies that

((), . ,t c.
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3. T is said to be V-hemicontinuous if for any x, y, z E X, the mapping ee -, (T(x + eel/), z) is

continuous at 0+.
REMARK. When Y R and C R+, Definition 2.2 becomes Definition 2.1.

DEFINITION 2.3. Let X and Y" be two normed spaces, T" X 2L(X,Y) a set-valued map and C
a closed, pointed and convex cone ofY such that Int C .

1. T is said to be C-monotone if for any x, y E X, s T(x) and t T(y), (s t, x F) E C
2. T is said to be C-pseudomonotone if for any x,y X, (s,y-x) -IntC for some

s T(x) implies that It, y ) Int C for some t
3. T is said to be V-hemicontmuous if for any z, y X, ee > 0 and ta T(x + eey), there exists

to T(x) such that for any z X, (ta, z/ (t0, z) as ee 0+.
REMARK. 1. Definition 2.3 is a generalization ofDefinition 2.2.

2. We can easily prove that the C-monotonicity implies the C-pseudomonotonicity.
Now we prove the following existence theorem for the noncompact case of(GVVI).
THEOREM 2. Let X and Y be Banach spaces, C a closed, pointed and convex cone in Y with

C : 0, D a nonempty convex subset of X, K a nonempty compact subset of X, and T X 2L(X’Y)

Suppose that

(1) T is C-pseudomonotone, compact-valued, and V-hemicontinuous; and

(2) for each nonempty finite subset N of D, there exists a nonempty compact convex subset LN of
D such that N C Lv and for each z LN\K there exists a y E LN such that t, y xl Int C for
all t T(F). Then (GVVI) is solvable.

PROOF. Define a multifunction F1 D 2z by

Ft(y) {z D" {s,y- x) q IntC for some s T(x)}

for y ( D. Then Ft is a KKM multifunction on D.
In fact, suppose that N {x,...,xn} C D, V.=eei 1, eei

_
O, 1,...,n and

x E=lee,x FI (N). Then for any s T(x), we have (s, Xi- X . Int C, 1,..., n Thus
we have

($,X) S, OtiXi eei8, Xi) e Oi(8, X IntC (s,z) intC.
i=1 i=1 i=1

Hence 0 /nt C, which contradicts the poimedness ofC. Therefore, F is a KKM multifunction on D
Define a multifimetion F2 D --, 2z) by

F2(y) {z D" (t,y z) lntC for some E

for y D. For any z Ft (y) there exists an s T(z) such that (s, y- z) f Int C. By the C-
pseudomonotonieity of T, there exists a t T(y) such that (t,y- z) lntC. Thus z E F2(y)
Hence for any y D, Ft (y) c F2(y). Therefore F2 is also a KKM multifunction on D.

We claim that F2 is closed-valued. In fact, for any y D, let {z,} be a sequence in F2()
which converges to x. D. Since z,, F2(y) for each n, there exists a t, E T(y) such that

(tn,y-z,) Y\(-/ntC). Since T(y) is compact, we may assume that {t,} converges to some

t. T(y). Note that

Since {t, } is bounded in L(X, Y), (tn - converges to (t., Z/- z.). Hence t. z. Int C,
whence we have z. F2 (y).
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Further, note that assumption (2) implies that, for each z 6 LN\K there exists a y 6 LN such that

: F2(t/). Hence Lv f3 ["I{F2(/): Z/E Lv} C K. Therefore, condition (2)ofTheorem holds.

Therefore, by Theorem 1, there exists an z K n f’l {F2 (/) Z/ D}. Then for any /E D, there

exists a t E T/such that (tu, Z/- z} Int C. By the convexity of D, for any z E (0,1), there

exists a to ET(c=i/+(1-c=)z) such that {ta,c(Z/-z)} -IntC. Dividing by c=, we have

(to,Z z} f IntC. By the V-hemicontinuity of T, there exists to E T(z) such that

(to, Z/- z) f Int C. Hence z E f’l {F1 (/) /E D} # (Z). Consequently, there exists an z0 K such

that for each z E D, there exists an 80 E T(zo) such that (80,z zo) f IntC.
COROLLARY 2.1. In Theorem 2, if D is closed, then the coercivity (2) can be replaced by the

following without affecting its conclusion:

(2’) there exists a nonempty compact subset K ofD and a Z/0 E K such that

(t,I/o Z) E IntC for z E D- K and tET(!/0).

PROOF. It suffices to show that (2’) implies (2). In fact, for any nonempty finite subset N of

we let Lv o({/0} U N U K) C D. By (2), for any z E Lr K C D K, there exists a

Z/0 E K C Lv such that (, Z/0 z) E Int C for all t E T(Z/0). Hence (2) holds.

REMARK. Even for a single-valued T, Corollary 2.1 is more general than Yang 19, Theorem 2].
For D K, Theorem 2 reduces to the following

COROLLARY 2.2 Let X and Y be Banach spaces, C a closed pointed and convex cone in Y with

IntC (Z), D a nonempty compact and convex subset ofX and T X --, 2L(x’’) C-pseudomonotone,

compact-valued, and V-hemicontinuous. Then (GVVI) is solvable.

REMARK. Corollary 2.2 extends Chen and Yang [6, Theorem 2.1, Part (i)].
COROLLARY 2.3 [7]. Let X be a reflexive Banach space, Y a Banach space, C a closed pointed

and convex cone in Y with IntC -(Z), D a nonempty bounded closed and convex subset of X, and

T :X --, 2L(x’’) C-pseudomonotone, compact-valued and V-hemicontinuous. Then (GVVI) is

solvable.

PROOF. Switch to the weak topology on X.
COROLLARY 2.4. Let X be a Banach space with dual space X’, D a nonempty compact and

convex subset of X and T :X --. X* pseudomonotone and hemicontinuous. Then there exists an

z0 E D such that (T(=:0), =: =:0) >_ 0 for all =: E D.
REMARK. Corollary 2.4 generalizes Cottle and Yao [11, Theorem 2.1]. Note that for Y R and

C R+, corollaries extend or reduce to well-known scalar valued variational inequalities due to

Hartman and Stampacchia, Browder, Stampacchia, Mosco, Dungundjii and Granas and many others.

3. FUZZY EXTENSION
Let X and Y be two normed spaces and ;T(L(X, Y)) the collection of all fitzzy sets on L(X, Y). A

mapping F from X into .TC(L(X, Y)) is called a fuzzy mapping.

If F :X --, .TC(L(X,Y)) is a fuzzy mapping, then F(z),z E X (denoted by F=), is a fttzzy set in

(L(X,Y)) and F=(8),8 E L(X,Y), is the degree of membership of 8 in F=. Let A E

and/ [0,1]. Then the set (A) { L(X, Y) A() _>/} is said to be an a-cut set of A.

DEFINITION 3.1 [20]. A fuzzy set A in L(X, Y) is compact if for each/ E (0,1], (A)# is

compact in L(X, Y).
DEFINITION 3.2. Let X and Y be two normed spaces, F X --, 1:(L(X, Y)) a fuzzy mapping

and C a closed, pointed and convex cone ofY such that IntC .
1. F is said to be C-monotone if for any z,/E X and 8,t E L(X,Y) with F=(8)> O and

’() > 0, ( t,z ) e c.
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2. F is said to be C-pseudomonotone if for any z, 9 E X and/3 E (0,1], (s, 9 z> IrC for

some s L(X,Y) with Fx(8)>/3 implies that <t,9-z> -InC for some t L(X,Y) with

F() > .
3. F is said to be hemicontinuous if for any x,9

where /3 E (0,1], there exists to L(X,Y) with Fz(to) >_/3 for any z X, <ta, z> <to, zl as

C --- 0+"Now we obtain a fuzzy extension ofTheorem 2.

THEOREM 3. Let X and Y be Banach spaces, C a closed, pointed and convex cone in Y with

Int C # 0, D a nonempty convex subset of X, K a nonempty compact subset of X, and

F X Y(L(X, Y)) a fimzy mapping such that there exists a real number/3 (0,1] such that for each

x X, (Fx) is a nonempty subset ofL(X, Y). Suppose that

(1) F is C-pseudomonotone and hemicontinuous, and for each z E X, F, is a compact fuzzy set in

L(X,r),
(2) for each nonempty finite subset N of D, there exists a compact convex subset Lv of D such

that N c Lv and for each z Lc\K there exists a 9 Lv such that <t, 9- z> Int C for all

L(X, r) .am F.(t) >/.
Then there exists an z0 D such that for each z E D, there exists an 80 L(X,Y) with

F.0 (0) _> such that <o, *0 lt C.
PROOF. Define a multifunction " X --, 2L(X’o for any z X, ’(z) F(z). It follows from

the C-pseudomonotonicity ofF that for any z, 9 X, <8, 9 z> IntC for some 8 (z) implies
that <t, 9- z> Int C for some t E ’(9). This implies hat is C-pseudomonotone. Furthermore,
the hemicontinuity of F implies the V-hemicontinuity of . Since for each z X, F, is a compact
fuzzy set in L(X, Y), then for each z K, (z) is compact. Condition (2) implies that assumption (2)
in Theorem 2 is satisfied for the multifimction ’. By Theorem 2.1 there exists z0 D such that for each
z D, there exists so E (z0) such that (so, z z0> IntC. Hence there exists an x0 D such
that for each z D, there exists s0 L(X,Y) with F,o (s0) >/3 such that <8o, z zo> . IrtC.

COROLLARY 3.1. In Theorem 3, if D is closed, then the coercivity (2) can be replaced by the

following without affecting its conclusion:

(2’) there exists a nonempty compact subset K ofD and a 90 K such that

<t, g0-z>E Int C for all x D K and all

For O K, Theorem 3 reduces to the following
COROLLARY :.:. Let X and Y be Banach space, C a closed pointed and convex cone in Y with

Int C # 0, D be a nonempty compact and convex subset of X and F X ’(L(X, Y)) a fuzzy
mapping such that there exists a real number/3 (0,1] such that for each z X, (F,) is a nonempty

subset of L(X, Y). Suppose that F is C-pseudomonotone and hemicontinuous, and that for each

z E F, F= is a compact fimzy set in L(X, Y’). Then there exists an z0

there exists an 80 L(X,Y) with Fzo(.0) >_/3 such that

COROLLARY 3.3 [12]. Let X be a reflexive Banach space and Y a Banach space. Let D be a

nonempty, bounded, closed and convex subset ofX and C a closed, pointed and convex cone in Y with

IntC # . Let F X --. (L(X,Y)) be a fuzzy mapping such that F is C-pseudomonotone and

hemicontinuous and that for each z X, F, is a compact fuzzy set in L(X, Y). Suppose further that

there exists a real number/3 E (0,1] such that for each z X, (F=) is a nonempty subset of L(X, it).
Then there exists an z0 O such that for each x D, there exists an

such that <s0, z z0 Irtt C.
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