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ABSTRACT. A mapping f:X--, Y between continua X and Y is said to be atomic at a

subcontinuum K of the domain X provided that f(K) is nondegenerate and K f-I(f(K)). The set

of subcontinua at which a given mapping is atomic, considered as a subspace of the hyperspace of all
subcontinua of X, is studied. The introduced concept is applied to get new characterizations of atomic

and monotone mappings. Some related questions are asked.
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INTRODUCTION
All spaces considered in the paper are assumed to be metric, and a mapping means a continuous

function. A continuum means a compact connected space. Recall that a mapping f X Y betweea

continua X and Y is said to be monotone if the inverse image of each poifit of Y (equivalently, of each

subcontinuum of Y) is connected. A surjective mapping f X Y between continua X and Y is said

to be atomic provided that, for each subcontinuum K of X such that $(K) is nondegenerate,
K f-l(f(K)). The notion of an atomic mapping was introduced by R. D. Anderson in [1] to describe

special decompositions of continua. Soon, atomic mappings turned out to be important tools in

continuum theory and proved to be interesting by themselves, and several of their properties have been

discovered, e.g. in [3], [5] and [6]. The following fact on atomic mappings is known (see [3, Theorem 1,

p. 49] and [6, (4.14), p. 17]).
Fact. Every atomic mapping ofa continuum is (hereditarily) monotone.
The paper consists oftwo parts. In the first one the composition factor property is discussed for the

class of atomic mappings. The second part deals with the family of subcontinua ofthe domain continuum

X at which a given mapping f X Y is atomic. In particular, atomic mappings as well as monotone

ones are characterized by conditions concerning the structure of this family. The paper is supplied with a

number of examples; open problems posed in both parts of the paper indicate some directions of a further

study in the area
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The following standard notation will be used. N, R and C stand for the sets of positive imegers,
reals, and complex numbers, respectively, equipped with their natural topologies, if needed. In the plane
R the symbol (x, /) means a point having x and /as its Cartesian coordinates.

1. COMPOSITION FACTOR PROPERTY
We say that a class Jd of mappings has the compositionfactor property if the composition g o h of

mappings h and g is in ,M only ifg

T. Makowiak asked in [6, (5.22), p. 33] if the class of atomic mappings has the composition factor

property, and conjectured that it does. Later, in [7, Chapter l, Example, p. 7] he has answered his

question in the negative. Another answer was given by E. E. Grace and E. J. Vought in [4, Section 4, p

140], who have shown that for the natural projection f of the circle of pseudo-arcs X onto the circle Z
(which is clearly an atomic mapping) there exist a continuum Y and two mappings h:X --, Y and

g:Y--, Z, such that f can be factored as the composition g o h and g is not atomic. Both the

conjecture of Makowiak and its negative solution by himself and by Grace and Vought show that the

composition factor property for the class of the atomic mappings should be studied in a more detailed

way, and that there are interesting problems around this property worthwhile clarif3dng.
In general, the following problem can be posed.
Problem 1.1. Let X, Y and Z be continua, and let h:X--, Y and g:Y- Z be surjective

mappings. Determine conditions concerning (a) the continuum X, (b) the continuum Y, (c) the mapping
h, under which the implication holds

if g o h is atomic, then g is atomic (1 2)

To be more precise, imroduce the following definition.

Definition 1.3. A class ofC of continua is said to have the compositionfactor propertyfor a class

.M ofmappings provided that for each continuum X E C if the composition g o h defined on X is in ,M,
then g is in

A continuum is said to be decomposable if it is the union oftwo its proper subcontinua. Otherwise it

is said to be indecomposable. A continuum is said to be hereditarily decomposable (herechtarily
indecomposable) provided that each of its nondegnerate subcominua is decomposable (indecomposable,

respectively). Finally recall that a space X is said to be homogeneous provided that for every two points

p and q ofX there is a homeomorphism f X ---, X such that f(p) q.

It is shown in [2] that the circle of pseudo-arcs (that has been used in [4] as mentioned above) is

constructed in the Euclidean plane, is decomposable, and is homogeneous. Therefore the result of Grace
and Vought can be formulated even in a stronger form, as follows.

Theorem 1.4. The following classes of continua do not have the composition factor property for the

class of atomic mappings: plane continua, decomposable continua, homogeneous cominua, as well as the

intersection ofany ofthese classes.

On the other hand, it is known that each atomic mapping defined on an arcwise connected continuum

is a homeomorphism provided that the image continuum is nondegenerate (see [6, (6.3), p. 51]). Since

the class of homeomorphisms obviously has the composition factor property [6, (5.14), p. 32], the

following result is immediate.

Statement 1.5. The class of arcwise connected continua (of locally connected ones, in particular) has

the composition factor property for the class ofatomic mappings.

Thus the following problem is natural.

Problem 1.6. Determine the classes of continua which have the composition factor property for the

class ofatomic mappings.

Two particular questions related to this problem are of a special interest.
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Question 1.7. Does the class of hereditarily decomposable continua have the composition factor
property for the class of atomic mappings?

Question 1.8. Does the class of hereditarily indecomposable continua have the composition factor
property for the class of atomic mappings?

A surjective mapping h X ---} Y between continua X and Y is said to be weakly confluent provided
that for each subcontinuum Q of Y there is a subcontinuum C ofX such that h(C) Q. In connection
with Problem 1.1, part (c), recall the following result (see [6, (5.29), p. 35]).

Proposition 1.9. Ifthe mapping h X Y is weakly confluent, then implication (1.2) is satisfied.

Note that the converse to Proposition 1.9 is not true. Namely we have the following example
Example 1.10. There are mappings h X --} Y and g Y - Z such that the composition g o h and

the second mapping g are atomic, while h is not weakly confluent.
Proof. Take as X the well known sin(1/x)-curve S defined by

S {(0,y) e R2: y e [- 1,1]} U {(x, sin(1/x)) e R2:x e (0,1]}, (1.11)

and let L be the limit segment of S. Identify the two end points of L and denote by h X Y the
identification mapping. Thus Y is the union of a half line and the circle h(L). Now let us shrink h(L) to

a pdint, and let g Y - Z be the quotient mapping. Thus Z is an arc, both g and g o h are atomic, while

h is not weakly confluent.

A surjective mapping h X Y between continua X and Y is said to be confluent provided that for
each subcontinuum Q ofY and for every component C ofthe inverse image h-(Q) we have h(C) Q.
Since a continuum Y is hereditarily indecomposable ifand only if each mapping from a continuum onto Y
is confluent (compare [6, (6.11), p. 53]), and since each confluent mapping obviously is weakly confluent,
we get a corollary to Proposition 1.9, which is related to part (b) ofProblem 1.1.

Corollary 1.12. Ifthe continuum Y is hereditarily indecomposable, then implication (1.2) is satisfied.

2. ATOMICITY
Given a continuum X with a metric d, we let 2x denote the hyperspace of all nonempty closed

subsets ofX equipped with the Hausdorffmetric H defined by

H(A,B) max{sup{d(a,B) a E A},sup{d(b,A) b B}}

(equivalently: with the Vietoris topology, see e.g. [8, (0.1), p. and (0.12), p. 10]. Further, we denote

by C(X) the hyperspace of all subcontinua ofX, i.e., of all connected elements of 2x, and by F1 (X) the

hyperspace of singletons. The reader is referred to Nadler’s book [8] for, needed information on the

structure ofhyperspaces. In particular, the following is well known (see [8, Theorem (1.13), p. 65]).
Fact 2.1. For each continuum X the hyperspace C(X) is a subcontinuum ofthe hyperspace 2x.
Given a mapping f X -} Y between continua X and Y, we consider mappings (called the induced

ones)

2f: 2x 2Y and C(f): C(X) ---* C(Y)

defined by

2f (A) f(A) for every A e 2x and C(f)(A) f(A) for every A e C(X).

Thus, by Fact 2.1, the following is obvious.

Fact 2.2. For every continua X and Y and for each mapping f X - Y we have 2IIC(X) C(f)
A proof ofthe next fact is straightfoward.
Fact 2.3. Let a mapping f:X---, Y between continua X and Y be given Then

C(f)(F(X)) C FI(Y).
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For an arbitrary surjection f" X -, Y between continua we consider subcominua ofX at which the
mapping satisfies the atomicity condition. More precisely, given a surjective mapping f" X Y
between continua X and Y, we denote by .,4(X, f) the family of all subcontinua K ofX such that f(K)
is nondegenerate and the equality K f-1 (f(K)) holds, i.e.,

t(X,f) {K C(X)\(C(f))-(FI(Y)) K f-(f(K))}. (2 4)

Thus the following result is a consequence ofthis definition.

Statement 2.5. Let a mapping X Y between continua X and Y be given. Then

X 4(X, f), so ,4(X, f) is nonempty; (2 6)

t(X, f) c (2.7)

Further, we put

B(X, f) A(X, /) (C(/))- (F (Y)). (28)

Proposition 2.9. For every decreasing sequence of continua belonging to/3(X, f) the limit of the
sequence also is in B(X, f).

Proof. For each n N assume K, B(X, f) and K+ C Kn. Put K LimK and note that
K f{K,.,’n N}.

Consider two cases. First, if K,., (C(f))-I(F1 (Y)) for almost all n N, then K (C(f))-I(F1 (Y)),
too, because Fi(Y) is compact, and so is its preimage under C(.f). Thus K B(X, f). Second, if

K A(X, f) for almost all n N, then f-l(.f(K,)) K, for these indices n, and we have

f-(f(g)) f-l(f(Limg,.,)) f-l(Lim f(g,)) f-l(N{f(g,.,) n N})
N{S-(f(K.)) , e r} N(K. e } g.

Thus either g A(X,f) (if f(K) is not a singleton), or K (C(f))-I(F(Y)) (if f(g) is

degenerate). Consequently, K B(X, f) by (2.8). The proofis then complete.
The example below shows that the conclusion ofProposition 2.9 is not tree for arbitrary sequences of

continua In particular, the assumption "decreasing" cannot be replaced by "increasing" in Proposition
2.9.

Example 2.10. There is a continuum X, an increasing sequence of subcontinua K,, in X and a

monotone mapping f" X Y such that K, B(X, f) for each n N, whil9 Lim K, B(X, f)
Proof. Let S be the sin(1/x)-curve definexi by (1.11). Put A {(0,y) R "y [1,2]}, and

define X S t3 A. Let Y=[O, 1], and let f X Y be the projection defined by f(x, y) x. For each

n N let K f-([1/(n + 1), 1]). Then K, .A(X, f) C B(X, f), and LimK S. Since

f(S) Y, we have f-(f(S))= X, and thus LimK, B(X,f), as claimed. The argument is

complete.
Theorem 2.11. For each surjective mapping f" X --, Y between continua X and Y the following

assertions are equivalent:

/ is atomic; (2 12)

(X, f) C(X)\(C(f))-’(F (Y)); (2.13)

B(X, f) C(X); (2 14)

A(X, f) is an open subset of C(X). (2 15)
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Proof. Equivalence of (2.12) and (2.13) is evident from the definitions, and (2.14) is another form of

(2 13) by (2.8). Thus (2.12), (2.13) and (2.14) are equivalent. The implication from (2.13) to (2 15) is

obvious. We will show that (2.15) implies (2.14). To this aim recall that an order arc in the hyperspace
U(X) is a family of subcontinua ofX such that for every two members A and B of we have either
A C B or B C A. Let p be an arbitrary point ofX and let denote an order arc in C(X) from {p} to

X. By (2.15) the intersection .A(X, f) is an open subset of E. Denote by C the component of the
imersection that comains X, and by K the (only) element of the boundary of C in E. Then
K E f A(X, f). Take a decreasing sequence {K, E C r E N} of subcontinua ofX converging to

K. Then K {K n E N), and since K E C C .A(X, f) C/3(X, f) by (2 8), we infer from
Proposition 2.9 that K B(X,f). Since K A(X,f), we have K (C(f))-:(F(Y)) by (2.8),
whence it follows that f(K) E F (Y), and therefore, by the definition of an order arc, the subarc of
from {p) to K is contained in (C(f))-(F:(Y)), thus in B(X, f), while the rest of the order arc , i.e.,
C, is contained in .A(X, f) by its definition. So, we conclude by (2.8) that the whole order arc is

comained in B(X, f). Now, since p was chosen as an arbitrary point of X, we infer from C B(X, f)
that C(X) C B(X, f), whence (2.14) follows. The proof is complete.

The next theorem is a characterization ofmonotone mappings in the introduced terms

Theorem 2.16. For each surjective mapping f:X Y between cominua X and Y the following
assertions are equivalent:

f is monotone; (2 17)

c(f)((x, f)) c(r). (2.1s)

Proof. Assume f is monotone. Since one inclusion of equality (2.18) is obvious, we have to show
the other one. Let L be a nondegenerate subcominuum of Y, i.e. L

_
U(Y)\F(Y) Putting

K f-l(L) we see that K is a continuum by monotoneity of f, and we have -](f(K))= f-](L) K
Thus K E .A(X, f) C 13(X, f) by (2.4) and (2.8), whence L U(f)(13(X, f)), and (2.18) follows

Assume equality (2.18) holds. Take a poim 0 E Y and, to show that f is monotone, i.e., that

f-l(t0) is connected, consider for each positive integer rz the component L, containing 0 of a

closed 1/r-neighborhood about F0 in Y. Thus L is a nondegenerate subcontinuum of Y, e,

L U(Y)\F(Y). Again by (2.18) we infer that L, C(f)(.A(X,f)), whence (for each n) there

exists a nondegenerate subcontinuum K, ofX such that f(K,) L,, and K, f- (f(K,)) f- (L,)
Observe that for each n we have L,+ C L,,, i.e., that the sequence {L.,} is decreasing, and that

{/0} t’{L, n E N}. Thus it follows from the equality K, f-(L) that the sequence {K} is

decreasing, too, and we have

Thus f- (/0) is a cominuum as the intersection of a decreasing sequence of continua K, The proof
is then complete.

Theorems 2.11 and (indirectly) 2.16 motivate the following question.

Question 2.19. What is the Borel class of the set A(X,f) considered as a subspace of the

hyperspace U(X)?
In connection with (2.6) of Statement 2.5 observe that the mapping h of the unit circle

S {z E C [z] 1} (where C stands for the complex plane) omo itself defined by h(z) z has the

property that the whole S is the only element of .A(X,f), i.e., .A(X,f) {S}. Generalizing this

phenomenon, consider the following class ofmappings.
Definition 2.20. A surjectiv mapping f X Y between continua X and Y is called ontratomic

provided that .A(X, f) {X). In other words, a nonconstant mapping f is contratomic if the only
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subcontinuum K of X having nondegenerate image and satisfying the equality K f-l(f(K)) is X
itself.

The above considered mapping h ofS onto itself is an example ofa contratomic mapping. Note that

the class of contratomic mappings does not contain homeomorphisms (moreover, any homeomorphism,

being atomic, is not contratomic). In connection with this observe that if again h S --, S is defined by

h(z)=z2 and g:S1--,S is the identity, then the compositions hog=h and goh=h are

contratomic, while g is not. This leads to the following observation.

Observation 2.21. The class of contratomic mappings does not have the composition factor

property.

Proposition 2.22. Let h X Y and g: Y ---, Z be surjcctive mappings between continua X, Y
and Z, respectively. If either h or g is contratomic, then the composition g o h is contratomic, too

Proof. For any K C X we have

K C h-(h(K)) and h(K)C g-(g(h(K)))

Let K
_
C(X)\{X}. If h is contratomic, then Kh-(h(K)); and if g is contratomic, then

h(g) g-(g(h(g))), which leads to

g C h-(h(g))h-(g-(g(h(g))))

since h is surjective. Putting f go h, we get K h-(g-(g(h(K)))) f-(f(K)) in either of the

two considered cases The proof is then complete.
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